Publications

Results 26–41 of 41
Skip to search filters

Potential hazards of compressed air energy storage in depleted natural gas reservoirs

Bauer, Stephen J.; Grubelich, Mark C.

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

More Details

Diversionary device history and revolutionary advancements

Grubelich, Mark C.

Diversionary devices also known as flash bangs or stun grenades were first employed about three decades ago. These devices produce a loud bang accompanied by a brilliant flash of light and are employed to temporarily distract or disorient an adversary by overwhelming their visual and auditory senses in order to gain a tactical advantage. Early devices that where employed had numerous shortcomings. Over time, many of these deficiencies were identified and corrected. This evolutionary process led to today's modern diversionary devices. These present-day conventional diversionary devices have undergone evolutionary changes but operate in the same manner as their predecessors. In order to produce the loud bang and brilliant flash of light, a flash powder mixture, usually a combination of potassium perchlorate and aluminum powder is ignited to produce an explosion. In essence these diversionary devices are small pyrotechnic bombs that produce a high point-source pressure in order to achieve the desired far-field effect. This high point-source pressure can make these devices a hazard to the operator, adversaries and hostages even though they are intended for 'less than lethal' roles. A revolutionary diversionary device has been developed that eliminates this high point-source pressure problem and eliminates the need for the hazardous pyrotechnic flash powder composition. This new diversionary device employs a fuel charge that is expelled and ignited in the atmosphere. This process is similar to a fuel air or thermobaric explosion, except that it is a deflagration, not a detonation, thereby reducing the overpressure hazard. This technology reduces the hazard associated with diversionary devices to all involved with their manufacture, transport and use. An overview of the history of diversionary device development and developments at Sandia National Laboratories will be presented.

More Details

Hydrogen peroxide-based propulsion and power systems

Keese, David L.; Melof, Brian M.; Ingram, Brian I.; Escapule, William R.; Grubelich, Mark C.; Ruffner, Judith A.

Less toxic, storable, hypergolic propellants are desired to replace nitrogen tetroxide (NTO) and hydrazine in certain applications. Hydrogen peroxide is a very attractive replacement oxidizer, but finding acceptable replacement fuels is more challenging. The focus of this investigation is to find fuels that have short hypergolic ignition delays, high specific impulse, and desirable storage properties. The resulting hypergolic fuel/oxidizer combination would be highly desirable for virtually any high energy-density applications such as small but powerful gas generating systems, attitude control motors, or main propulsion. These systems would be implemented on platforms ranging from guided bombs to replacement of environmentally unfriendly existing systems to manned space vehicles.

More Details

Autonomous microexplosives subsurface tracing system final report

Warpinski, Norman R.; Ingram, Brian I.; Melof, Brian M.; Engler, Bruce P.; Grubelich, Mark C.; Kravitz, Stanley H.; Rivas, Raul R.; Dulleck, George R.

The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

More Details

Instructions and Changes to the NEWPEP Thermochemical Code

Dobbs, Jennifer L.; Grubelich, Mark C.

The NEWPEP thermochemical code is a computer program that has been developed to help predict the performance of a user generated propellant system. Sandia has used the program to model the use of different oxidizer/fuel combinations. The program has been adapted to fit Sandia's need by expanding the programs combustion species database and the ingredient list. This paper provides the user with a thorough set of operating instructions.

More Details
Results 26–41 of 41
Results 26–41 of 41