Publications

Results 176–200 of 216
Skip to search filters

Investigation of metal hydride nanoparticles templated in metal organic frameworks

Bhakta, Raghunandan K.; Allendorf, Mark D.; Behrens, Richard B.; Highley, Aaron M.; Jacobs, Benjamin J.

Hydrogen is proposed as an ideal carrier for storage, transport, and conversion of energy. However, its storage is a key problem in the development of hydrogen economy. Metal hydrides hold promise in effectively storing hydrogen. For this reason, metal hydrides have been the focus of intensive research. The chemical bonds in light metal hydrides are predominantly covalent, polar covalent or ionic. These bonds are often strong, resulting in high thermodynamic stability and low equilibrium hydrogen pressures. In addition, the directionality of the covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, resulting in slow hydrogen sorption kinetics and limited reversibility. One method for enhancing reaction kinetics is to reduce the size of the metal hydrides to nano scale. This method exploits the short diffusion distances and constrained environment that exist in nanoscale hydride materials. In order to reduce the particle size of metal hydrides, mechanical ball milling is widely used. However, microscopic mechanisms responsible for the changes in kinetics resulting from ball milling are still being investigated. The objective of this work is to use metal organic frameworks (MOFs) as templates for the synthesis of nano-scale NaAlH4 particles, to measure the H2 desorption kinetics and thermodynamics, and to determine quantitative differences from corresponding bulk properties. Metal-organic frameworks (MOFs) offer an attractive alternative to traditional scaffolds because their ordered crystalline lattice provides a highly controlled and understandable environment. The present work demonstrates that MOFs are stable hosts for metal hydrides and their reactive precursors and that they can be used as templates to form metal hydride nanoclusters on the scale of their pores (1-2 nm). We find that using the MOF HKUST-1 as template, NaAlH4 nanoclusters as small as 8 formula units can be synthesized inside the pores. A detailed picture of the hydrogen desorption is investigated using a simultaneous thermogravimetric modulated-beam mass spectrometry instrument. The hydrogen desorption behavior of NaAlH4 nano-clusters is found to be very different from bulk NaAlH4. The bulk NaAlH4 desorbs about 70 wt% hydrogen {approx}250 C. In contrast, confinement of NaAlH4 within the MOF pores dramatically increases the rate of H2 desorption at lower temperatures. About {approx}80% of the total H2 desorbed from MOF-confined NaAlH4 is observed between 70 to 155 C. In addition to HKUST-1, we find that other MOFs (e.g. MIL-68 and MOF-5) can be infiltrated with hydrides (LiAlH4, LiBH4) or hydride precursors (Mg(C4H9)2 and LiC2H5) without degradation. By varying pore dimensions, metal centers, and the linkers of MOFs, it will be possible to determine whether the destabilization of metal hydrides is dictated only by the size of the metal hydride clusters, their local environment in a confined space, or by catalytic effects of the framework.

More Details

Use of metal organic fluors for spectral discrimination of neutrons and gammas

Allendorf, Mark D.; Feng, Patrick L.

A new method for spectral shape discrimination (SSD) of fast neutrons and gamma rays has been investigated. Gammas interfere with neutron detection, making efficient discrimination necessary for practical applications. Pulse shape discrimination (PSD) in liquid organic scintillators is currently the most effective means of gamma rejection. The hazardous liquids, restrictions on volume, and the need for fast timing are drawbacks to traditional PSD scintillators. In this project we investigated harvesting excited triplet states to increase scintillation yield and provide distinct spectral signatures for gammas and neutrons. Our novel approach relies on metal-organic phosphors to convert a portion of the energy normally lost to the scintillation process into useful luminescence with sub-microsecond lifetimes. The approach enables independent control over delayed luminescence wavelength, intensity, and timing for the first time. We demonstrated that organic scintillators, including plastics, nanoporous framework materials, and oil-based liquids can be engineered for both PSD and SSD.

More Details

Metal%3CU%2B2010%3Eorganic frameworks for radiation detection and particle discrimination

Feng, Patrick L.; Allendorf, Mark D.

Metal-organic frameworks (MOFs) represent a diverse and rapidly expanding class of materials comprising metal ions bridged by organic linker molecules. These robust crystalline structures have been found to exhibit exceptionally large surface areas, paving the way for diverse applications ranging from gas storage and separations to catalysis, drug delivery, and sensing. Less well understood are the intrinsic luminescence properties of MOFs, which arise from the electronic transitions within the hybrid metal-organic structure. Recently, we reported the observation of scintillation in stilbene-based MOFs, representing the discovery of the first completely new class of radiation detection materials since the advent of plastic scintillators in 1950. Photoluminescence and ion-induced luminescence spectroscopy of these materials show that both the luminescence spectrum and its timing can be varied by altering the local environment of the chromophore, establishing critical insight towards the rational design of materials for specific radiation detection applications. In this work, we describe the luminescence and scintillating properties of a series of isoreticular MOFs (IRMOFs), emphasizing the structural and electronic effects associated with systematic modification of the chromophore. Among these structures are IRMOFs based on naphthyl, biphenyl, terphenyl, and stilbene dicarboxylate linkers, for which unique structural changes and optical properties are observed. In addition to chemical changes in the structure, framework interpenetration may also be synthetically controlled, resulting in pairs of catenated and non-catenated IRMOFs based upon the same organic linker. The distinct interchromophore distances and solvate structure in these pairs lead to unique luminescence spectra that are interpreted in terms of energy transfer interactions. These spectral changes provide insight into the mechanism for radiation-induced luminescence, which for MOFs may differ significantly from the photoluminescence spectrum.

More Details

Nanoporous framework materials interfaced with mechanical sensors for highly-sensitive chemical sensing

Houk, Ronald H.; Robinson, Alex L.; Skinner, J.L.; Thornberg, Steven M.; Allendorf, Mark D.

We will describe how novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) can be interfaced with common mechanical sensors, such as surface acoustic wave (SAW), microcantilever array, and quartz crystal microbalance (QCM) devices, and subsequently be used to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Chemical detection using micro-electro-mechanical-systems (MEMS) devices (i.e. SAWs, microcantilevers) requires the use of recognition layers to impart selectivity. Unlike traditional organic polymers, which are dense, the nanoporosity and ultrahigh surface areas of NFM allow for greater analyte uptake and enhance transport into and out of the sensing layer. This enhancement over traditional coatings leads to improved response times and greater sensitivity, while their ordered structure allows chemical tuning to impart selectivity. We describe here experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and volatile organic compound (VOCs), and their integration with the surfaces of MEMS devices. Molecular simulation shows that a high degree of chemical selectivity is feasible. For example, a suite of MOFs can select for strongly interacting organics (explosives, CWMD) vs. lighter volatile organics at trace concentrations. At higher gas pressures, the CWMD are deselected in favor of the volatile organics. We will also demonstrate the integration of various NFM on the surface of microcantiliver arrays, QCM crystals, and SAW devices, and describe new synthetic methods developed to improve the quality of NFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response times, selectivity, and sensitivity.

More Details

Computational screening of large molecule adsorption by metal-organic frameworks

Greathouse, Jeffery A.; Allendorf, Mark D.

Grand canonical Monte Carlo simulations were performed to investigate trends in low-pressure adsorption of a broad range of organic molecules by a set of metal-organic frameworks (MOFs). The organic analytes considered here are relevant to applications in chemical detection: small aromatics (o-, m-, and p-xylene), polycyclic aromatic hydrocarbons (naphthalene, anthracene, phenanthrene), explosives (TNT and RDX), and chemical warfare agents (GA and VM). The framework materials included several Zn-MOFs (IRMOFs 1-3, 7, 8), a Cr-MOF (CrMIL-53lp), and a Cu-MOF (HKUST-1). Many of the larger organics were significantly adsorbed by the target MOFs at low pressure, which is consistent with the exceptionally high isosteric heats of adsorption (25 kcal/mol - 60 kcal/mol) for this range of analyte. At a higher loading pressure of 101 kPa, the Zn-MOFs show a much higher volumetric uptake than either CrMIL-53-lp or HKUST-1 for all types of analyte. Within the Zn-MOF series, analyte loading is proportional to free volume, and loading decreases with increasing analyte size due to molecular packing effects. CrMIL-53lp showed the highest adsorption energy for all analytes, suggesting that this material may be suitable for low-level detection of organics.

More Details

Plasmonic devices and sensors built from ordered nanoporous materials

Allendorf, Mark D.; Houk, Ronald H.; Jacobs, Benjamin J.; El Gabaly Marquez, Farid E.

The objective of this project is to lay the foundation for using ordered nanoporous materials known as metal-organic frameworks (MOFs) to create devices and sensors whose properties are determined by the dimensions of the MOF lattice. Our hypothesis is that because of the very short (tens of angstroms) distances between pores within the unit cell of these materials, enhanced electro-optical properties will be obtained when the nanopores are infiltrated to create nanoclusters of metals and other materials. Synthetic methods used to produce metal nanoparticles in disordered templates or in solution typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with potential for both steric and chemical stabilization. We report results of synthetic efforts. First, we describe a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions {le} 1 nm, with a significant fraction existing as Ag{sub 3} clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible. Second, a preliminary study of methods to incorporate fulleride (K{sub 3}C{sub 60}) guest molecules within MOF pores that will impart electrical conductivity is described.

More Details

Adsorption and separation of noble gases by IRMOF-1: Grand canonical monte carlo simulations

Industrial and Engineering Chemistry Research

Greathouse, Jeffery A.; Kinnibrugh, Tiffany L.; Allendorf, Mark D.

The gas storage capacity of metal-organic frameworks (MOFs) is well-known and has been investigated using both experimental and computational methods. Previous Monte Carlo computer simulations of gas adsorption by MOFs have made several questionable approximations regarding framework-framework and framework-adsorbate interactions: potential parameters from general force fields have been used, and framework atoms were fixed at their crystallographic coordinates (rigid framework). We assess the validity of these approximations with grand canonical Monte Carlo simulations for a well-known Zn-based MOF (IRMOF-1), using potential parameters specifically derived for IRMOF-1. Our approach is validated by comparison with experimental results for hydrogen and xenon adsorption at room temperature. The effects of framework flexibility on the adsorption of noble gases and hydrogen are described, as well as the selectivity of IRMOF-1 for xenon versus other noble gases. At both low temperature (78 K) and room temperature, little difference in gas adsorption is seen between the rigid and flexible force fields. Experimental trends of noble gas inflation curves are also matched by the simulation results. Additionally, we show that IRMOF-1 selectively adsorbs Xe atoms in Xe/Kr and Xe/Ar mixtures, and this preference correlates with the trend in van der Waals parameters for the adsorbate atoms. © 2009 American Chemical Society.

More Details

Summary report : direct approaches for recycling carbon dioxide into synthetic fuel

Siegel, Nathan P.; Diver, Richard B.; Gelbard, Fred G.; Ambrosini, Andrea A.; Allendorf, Mark D.

The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is compatible with much of the existing fuel infrastructure.

More Details

Stress-induced chemical detection using flexible metal-organic frameworks

Journal of the American Chemical Society

Allendorf, Mark D.; Houk, Ronald H.; Andruszkiewicz, Leanne; Talin, A.A.; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A.; Hesketh, Peter J.

In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. Copyright © 2008 American Chemical Society.

More Details

Computational investigation of noble gas adsorption and separation by nanoporous materials

Greathouse, Jeffery A.; Allendorf, Mark D.; Sanders, Joseph C.

Molecular simulations are used to assess the ability of metal-organic framework (MOF) materials to store and separate noble gases. Specifically, grand canonical Monte Carlo simulation techniques are used to predict noble gas adsorption isotherms at room temperature. Experimental trends of noble gas inflation curves of a Zn-based material (IRMOF-1) are matched by the simulation results. The simulations also predict that IRMOF-1 selectively adsorbs Xe atoms in Xe/Kr and Xe/Ar mixtures at total feed gas pressures of 1 bar (14.7 psia) and 10 bar (147 psia). Finally, simulations of a copper-based MOF (Cu-BTC) predict this material's ability to selectively adsorb Xe and Kr atoms when present in trace amounts in atmospheric air samples. These preliminary results suggest that Cu-BTC may be an ideal candidate for the pre-concentration of noble gases from air samples. Additional simulations and experiments are needed to determine the saturation limit of Cu-BTC for xenon, and whether any krypton atoms would remain in the Cu-BTC pores upon saturation.

More Details
Results 176–200 of 216
Results 176–200 of 216