Publications

Results 126–150 of 216
Skip to search filters

Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8

Microporous and Mesoporous Materials

Parkes, Marie V.; Teich-McGoldrick, Stephanie T.; Greathouse, Jeffery A.; Allendorf, Mark D.

Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of framework force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.

More Details

Final LDRD report :

Ambrosini, Andrea A.; Allendorf, Mark D.; Coker, Eric N.; Ermanoski, Ivan E.; Hogan, Roy E.; McDaniel, Anthony H.

Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

More Details

Kinetics and mechanism of solar-thermochemical H2 production by oxidation of a cobalt ferrite-zirconia composite

Energy and Environmental Science

Scheffe, Jonathan R.; McDaniel, Anthony H.; Allendorf, Mark D.; Weimer, Alan W.

Accurate knowledge of water splitting kinetics is essential for the design and optimization of high-temperature thermochemical cycles for solar-driven fuel production, but such crucial data are unavailable for virtually all redox materials of potential practical value. We describe an investigation of the redox activity and oxidation kinetics of cobalt ferrite, a promising material for this application that is representative of a broader class of metal-substituted ferrites. To enable repetitive cycling, ferrites must be supported on another oxide to avoid sintering and deactivation. Consequently, we synthesized a composite material using atomic layer deposition of cobalt and iron oxides on zirconia, a commonly used ferrite "support", to create a well-controlled, uniformly distributed composition. Our results show that the support is not an innocent bystander and that dissolved iron within it reacts by a different mechanism than embedded iron oxide particles in the matrix. Samples were thermally reduced at 1450 °C under helium and oxidized with steam at realistic process temperatures ranging from 900 °C to 1400 °C. Experiments within a fluid-dynamically well-behaved stagnation-flow reactor, coupled with detailed numerical modelling of the transient H2 production rates, allow us to effectively deconvolve experimental artefacts from intrinsic material behaviour over the entire time domain of the oxidation reaction. We find that second-order reaction and diffusion-limited mechanisms occur simultaneously at different oxidation rates and involve iron in two separate phases: (1) reduced Fe dissolved in the ZrO2 support and (2) iron oxide located at the interface between embedded ferrite particles and the zirconia matrix. Surprisingly, we also identified a catalytic mechanism occurring at the highest temperatures by which steady-state production of H 2 and O2 occurs. The results reported here, which include Arrhenius rate constants for both oxidation mechanisms, will enable high-fidelity computational simulation of this complex, but promising approach to renewable fuel production. © 2013 The Royal Society of Chemistry.

More Details

Nano-ordering of donor-acceptor interactions using Metal-Organic Frameworks as scaffolds

ECS Transactions

Leong, Kirsty; Foster, Michael E.; Wong, Bryan M.; Spoerke, Erik D.; Gough, Dara G.; Deaton, Joseph C.; Allendorf, Mark D.

Metal-Organic Frameworks (MOFs) are nanoporous materials with tunable pore sizes that can accommodate and stabilize small molecules. Because of their long-range order and wellunderstood pore environment, the nano-confinement of donoracceptor materials within MOFs offers a new methodology for creating uniform phase-segregated donor-acceptor interfaces. Phase segregation and the photo-physical effects of confining α,ω-Dihexylsexithiophene (DH-6T) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in several MOFs and the potential role of the MOF in creating a nano-heterojunction for organic photovoltaics are discussed. We demonstrate infiltration of both molecules into MOF pores and use luminescence and absorption spectroscopies to characterize the MOF-guest energy transfer processes. Comparison with density functional theory allows us to determine the energetics and band alignment within the MOF. The results demonstrate the utility of MOFs as scaffolds for sub-nanoscale ordering of donor and acceptor species within a highly uniform environment, allowing both the interaction and separation distance to be much more controlled than in the classical bulk heterojunction. © The Electrochemical Society.

More Details
Results 126–150 of 216
Results 126–150 of 216