Publications

Results 76–100 of 216
Skip to search filters

HyMARC (Sandia) Annual Report

Allendorf, Mark D.; Stavila, Vitalie S.; Klebanoff, Leonard E.; Kolasinski, Robert K.; El Gabaly Marquez, Farid E.; Zhou, Xiaowang Z.; White, James L.

The Sandia HyMARC team continued its development of new synthetic, modeling, and diagnostic tools that are providing new insights into all major classes of storage materials, ranging from relatively simple systems such as PdHx and MgH2, to exceptionally complex ones, such as the metal borohydrides, as well as materials thought to be very well-understood, such as Ti-doped NaAlH4. This unprecedented suite of capabilities, capable of probing all relevant length scales within storage materials, is already having a significant impact, as they are now being used by both Seedling projects and collaborators at other laboratories within HyMARC. We expect this impact to grow as new Seedling projects begin and through collaborations with other scientists outside HyMARC. In the coming year, Sandia efforts will focus on the highest impact problems, in coordination with the other HyMARC National Laboratory partners, to provide the foundational science necessary to accelerate the discovery of new hydrogen storage materials.

More Details

MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework

Journal of Physical Chemistry C

Spoerke, Erik D.; Small, Leo J.; Foster, Michael E.; Wheeler, Jill S.; Ullman, Andrew M.; Stavila, Vitalie S.; Rodriguez, Mark A.; Allendorf, Mark D.

Metal-organic frameworks (MOFs) are highly ordered, functionally tunable supramolecular materials with the potential to improve dye-sensitized solar cells (DSSCs). Several recent reports have indicated that photocurrent can be generated in Grätzel-type DSSC devices when MOFs are used as the sensitizer. However, the specific role(s) of the incorporated MOFs and the potential influence of residual MOF precursor species on device performance are unclear. Herein, we describe the assembly and characterization of a simplified DSSC platform in which isolated MOF crystals are used as the sensitizer in a planar device architecture. We selected a pillared porphyrin framework (PPF) as the MOF sensitizer, taking particular care to avoid contamination from light-absorbing MOF precursors. Photovoltaic and electrochemical characterization under simulated 1-sun and wavelength-selective illumination revealed photocurrent generation that is clearly ascribable to the PPF MOF. Continued refinement of highly versatile MOF structure and chemistry holds promise for dramatic improvements in emerging photovoltaic technologies. (Figure Presented).

More Details

Guest molecules as a design element for metal-organic frameworks

MRS Bulletin

Allendorf, Mark D.; Medishetty, Raghavender; Fischer, Roland A.

The well-known synthetic versatility of metal-organic frameworks (MOFs) is rooted in the ability to predict the metal-ion coordination geometry and the vast possibilities to use organic chemistry to modify the linker groups. However, the use of molecules occupying the pores as a component of framework design has been largely ignored. Recent reports show that the presence of these so-called guests can have dramatic effects, even when they are a seemingly innocuous species such as water or polar solvents. We term these guests non-innocent when their presence alters the MOF in such a way as to create a new material with properties different from the MOF without the guests. Advantages of using guest molecules to impart new properties to MOFs include the relative ease of introducing new functionalities, the ability to modify the material properties at will by removing the guest or inserting different ones, and avoidance of the difficulties associated with synthesizing new frameworks, which can be challenging even when the basic topology remains constant. In this article, we describe the Guest@MOF concept and provide examples illustrating its potential as a new MOF design element.

More Details

Transforming MOFs for Energy Applications Using the Guest@MOF Concept

Inorganic Chemistry

Ullman, Andrew M.; Brown, Jonathan W.; Foster, Michael E.; Leonard, Francois L.; Leong, Kirsty; Stavila, Vitalie S.; Allendorf, Mark D.

As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling these MOF-guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Our work in the areas of H2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.

More Details

Metallic behavior in the graphene analogue Ni3(HITP)2 and a strategy to render the material a semiconductor

Journal of Physical Chemistry. C

Foster, Michael E.; Sohlberg, Karl S.; Spataru, Dan C.; Allendorf, Mark D.

The metal organic framework material Ni3(2,3,6,7,10,11 - hexaiminotriphenylene)2, (Ni3(HITP)2) is composed of layers of extended conjugated planes analogous to graphene. We carried out Density functional theory (DFT) calculations to model the electronic structure of bulk and monolayer Ni3(HITP)2. The layered 3D material is metallic, similar to graphene. Our calculations predict that there is appreciable band dispersion not only in-plane, but perpendicular to the stacking planes as well, suggesting that, unlike graphene, the conductivity may be nearly isotropic. In contrast, a 2D monolayer of the material exhibits a band gap, consistent with previously published results. Insight obtained from studies of the evolution of the material from semiconducting to metallic as the material is transitioned from 2D to 3D suggests the possibility of modifying the material to render it semiconducting by changing the metal center and inserting spacer moieties between the layers. Furthermore, the DFT calculations predict that the modified material will be structurally stable and exhibit a band gap.

More Details

Molecular Dynamics Simulations of Hydrogen Diffusion in Aluminum

Journal of Physical Chemistry C

Zhou, X.W.; El Gabaly, F.; Stavila, Vitalie S.; Allendorf, Mark D.

Hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the "end points". For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear how they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.

More Details
Results 76–100 of 216
Results 76–100 of 216