Publications

Results 51–98 of 98
Skip to search filters

Adaptive Beam Smoothing with Plasma-Pinholes for Laser-Entrance-Hole Transmission Studies

Geissel, Matthias G.; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Kimmel, Mark W.; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Stahoviak, John W.; Porter, John L.

Abstract not provided.

Z-petawatt driven ion beam radiography development

Schollmeier, Marius; Sefkow, Adam B.; Geissel, Matthias G.; Schwarz, Jens S.; Rambo, Patrick K.

Laser-driven proton radiography provides electromagnetic field mapping with high spatiotemporal resolution, and has been applied to many laser-driven High Energy Density Physics (HEDP) experiments. Our report addresses key questions about the feasibility of ion radiography at the Z-Accelerator (%E2%80%9CZ%E2%80%9D), concerning laser configuration, hardware, and radiation background. Charged particle tracking revealed that radiography at Z requires GeV scale protons, which is out of reach for existing and near-future laser systems. However, it might be possible to perform proton deflectometry to detect magnetic flux compression in the fringe field region of a magnetized liner inertial fusion experiment. Experiments with the Z-Petawatt laser to enhance proton yield and energy showed an unexpected scaling with target thickness. Full-scale, 3D radiation-hydrodynamics simulations, coupled to fully explicit and kinetic 2D particle-in-cell simulations running for over 10 ps, explain the scaling by a complex interplay of laser prepulse, preplasma, and ps-scale temporal rising edge of the laser.

More Details

Z-Backlighter facility upgrades: A path to short/long pulse, multi-frame, multi-color x-ray backlighting at the Z-Accelerator

Proceedings of SPIE - The International Society for Optical Engineering

Schwarz, Jens S.; Rambo, Patrick K.; Geissel, Matthias G.; Kimmel, Mark W.; Schollmeier, Marius; Smith, Ian C.; Bellum, John; Kletecka, Damon; Sefkow, Adam; Smith, Douglas; Athertona, Briggs

We discuss upgrades and development currently underway at the Z-Backlighter facility. Among them are a new optical parametric chirped pulse amplifier (OPCPA) front end, 94 cm × 42 cm multi layer dielectric (MLD) gratings, dichroic laser beam transport studies, 25 keV x-ray source development, and a major target area expansion. These upgrades will pave the way for short/long pulse, multi-frame, multi-color x-ray backlighting at the Z-Accelerator. © 2011 SPIE.

More Details

Above-60-MeV proton acceleration with a 150 TW laser system

Schollmeier, Marius; Geissel, Matthias G.; Sefkow, Adam B.; Rambo, Patrick K.; Schwarz, Jens S.; Atherton, B.W.

Laser-accelerated proton beams can be used in a variety of applications, e.g. ultrafast radiography of dense objects or strong electromagnetic fields. Therefore high energies of tens of MeV are required. We report on proton-acceleration experiments with a 150 TW laser system using mm-sized thin foils and mass-reduced targets of various thicknesses. Thin- foil targets yielded maximum energies of 50 MeV. A further reduction of the target dimensions from mm-size to 250 x 250 x 25 microns increased the maximum proton energy to >65 MeV, which is comparable to proton energies measured only at higher-energy, Petawatt-class laser systems. The dependence of the maximum energy on target dimensions was investigated, and differences between mm-sized thin foils and mass-reduced targets will be reported.

More Details

Ultrafast 25 keV backlighting for experiments on Z

Geissel, Matthias G.; Schollmeier, Marius; Kimmel, Mark W.; Pitts, Todd A.; Rambo, Patrick K.; Schwarz, Jens S.; Sefkow, Adam B.; Atherton, B.W.

To extend the backlighting capabilities for Sandia's Z-Accelerator, Z-Petawatt, a laser which can provide laser pulses of 500 fs length and up to 120 J (100TW target area) or up to 450 J (Z / Petawatt target area) has been built over the last years. The main mission of this facility focuses on the generation of high energy X-rays, such as tin Ka at 25 keV in ultra-short bursts. Achieving 25 keV radiographs with decent resolution and contrast required addressing multiple problems such as blocking of hot electrons, minimization of the source, development of suitable filters, and optimization of laser intensity. Due to the violent environment inside of Z, an additional very challenging task is finding massive debris and radiation protection measures without losing the functionality of the backlighting system. We will present the first experiments on 25 keV backlighting including an analysis of image quality and X-ray efficiency.

More Details

Achromatic circular polarization generation for ultra-intense lasers

Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010

Rambo, Patrick K.; Kimmel, Mark W.; Bennett, Guy R.; Schwarz, Jens S.; Schollmeier, Marius; Atherton, B.W.

Generating circular polarization for ultra-intense lasers requires solutions beyond traditional transmissive waveplates which have insufficient bandwidth and pose nonlinear phase (B-integral) problems. We demonstrate a reflective design employing 3 metallic mirrors to generate circular polarization. ©2010 Optical Society of America.

More Details

Ultrafast 25 keV backlighting for experiments on Z

Geissel, Matthias G.; Atherton, B.W.; Pitts, Todd A.; Schollmeier, Marius; Headley, Daniel I.; Kimmel, Mark W.; Rambo, Patrick K.; Robertson, Grafton K.; Sefkow, Adam B.; Schwarz, Jens S.; Speas, Christopher S.

To extend the backlighting capabilities for Sandia's Z-Accelerator, Z-Petawatt, a laser which can provide laser pulses of 500 fs length and up to 120 J (100TW target area) or up to 450 J (Z/Petawatt target area) has been built over the last years. The main mission of this facility focuses on the generation of high energy X-rays, such as tin K{alpha} at 25 keV in ultra-short bursts. Achieving 25 keV radiographs with decent resolution and contrast required addressing multiple problems such as blocking of hot electrons, minimization of the source, development of suitable filters, and optimization of laser intensity. Due to the violent environment inside of Z, an additional very challenging task is finding massive debris and radiation protection measures without losing the functionality of the backlighting system. We will present the first experiments on 25 keV backlighting including an analysis of image quality and X-ray efficiency.

More Details

Proton acceleration experiments with Z-Petawatt

Schollmeier, Marius; Geissel, Matthias G.; Sefkow, Adam B.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Atherton, B.W.

The outline of this presentation: (1) Proton acceleration with high-power lasers - Target Normal Sheath Acceleration concept; (2) Proton acceleration with mass-reduced targets - Breaking the 60 MeV threshold; (3) Proton beam divergence control - Novel focusing target geometry; and (4) New experimental capability development - Proton radiography on Z.

More Details

Achromatic circular polarization generation for ultra-intense lasers

Rambo, Patrick K.; Kimmel, Mark W.; Bennett, Guy R.; Schwarz, Jens S.; Schollmeier, Marius; Atherton, B.W.

Generating circular polarization for ultra-intense lasers requires solutions beyond traditional transmissive waveplates which have insufficient bandwidth and pose nonlinear phase (B-integral) problems. We demonstrate a reflective design employing 3 metallic mirrors to generate circular polarization.

More Details
Results 51–98 of 98
Results 51–98 of 98