Publications

Results 26–27 of 27
Skip to search filters

Integrated system dynamics toolbox for water resources planning

Tidwell, Vincent C.; Malczynski, Leonard A.; Passell, Howard D.; Ballantine, Marissa D.

Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

More Details

Probing deviations from traditional colloid filtration theory by atomic forces microscopy

Ballantine, Marissa D.

Colloid transport through saturated media is an integral component of predicting the fate and transport of groundwater contaminants. Developing sound predictive capabilities and establishing effective methodologies for remediation relies heavily on our ability to understand the pertinent physical and chemical mechanisms. Traditionally, colloid transport through saturated media has been described by classical colloid filtration theory (CFT), which predicts an exponential decrease in colloid concentration with travel distance. Furthermore, colloid stability as determined by Derjaguin-Landau-Veney-Overbeek (DLVO) theory predicts permanent attachment of unstable particles in a primary energy minimum. However, recent studies show significant deviations from these traditional theories. Deposition in the secondary energy minimum has been suggested as a mechanism by which observed deviations can occur. This work investigates the existence of the secondary energy minimum as predicted by DLVO theory using direct force measurements obtained by Atomic Forces Microscopy. Interaction energy as a function of separation distance between a colloid and a quartz surface in electrolyte solutions of varying ionic strength are obtained. Preliminary force measurements show promise and necessary modifications to the current experimental methodology have been identified. Stringent surface cleaning procedures and the use of high-purity water for all injectant solutions is necessary for the most accurate and precise measurements. Comparisons between direct physical measurements by Atomic Forces Microscopy with theoretical calculations and existing experimental findings will allow the evaluation of the existence or absence of a secondary energy minimum.

More Details
Results 26–27 of 27
Results 26–27 of 27