Publications

Results 76–100 of 163
Skip to search filters

Geologic Carbon Storage and Fracture Fate: Chemistry Heterogeneity Models and What to do with it all

Dewers, Thomas D.; Rinehart, Alex R.; Major, Jonathan R.; Lee, Sanghyun L.; Reber, Jacqueline R.; Choens, Robert C.; Feldman, Joshua D.; Eichhubl, Peter E.; Wheeler, Mary W.; Ganis, Ben G.; Hayman, Nick H.; Ilgen, Anastasia G.; Prodanovic, Masa P.; Bishop, Joseph E.; Balhoff, Matt B.; Espinoza, Nicolas E.; Martinez, Mario J.; Yoon, Hongkyu Y.

Abstract not provided.

Two-phase convective CO2 dissolution in saline aquifers

Water Resources Research

Martinez, Mario J.; Hesse, M.A.

Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. This removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.

More Details

Simulating fragmentation and fluid-induced fracture in disordered media using random finite-element meshes

International Journal for Multiscale Computational Engineering

Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania N.

Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. Here, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipated during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.

More Details
Results 76–100 of 163
Results 76–100 of 163