Publications

Results 51–100 of 316
Skip to search filters

Tunnel coupling tuning of a QD-donor S-T qubit

Jock, Ryan M.; Jock, Ryan M.; Rudolph, Martin R.; Rudolph, Martin R.; Harvey-Collard, Patrick H.; Harvey-Collard, Patrick H.; Jacobson, Noah T.; Jacobson, Noah T.; Wendt, J.R.; Wendt, J.R.; Pluym, Tammy P.; Pluym, Tammy P.; Dominguez, Jason J.; Dominguez, Jason J.; Manginell, Ronald P.; Manginell, Ronald P.; Lilly, Michael L.; Lilly, Michael L.; Carroll, Malcolm; Carroll, Malcolm

Abstract not provided.

Coupling MOS quantum dot and phosphorous donor qubit systems

Technical Digest - International Electron Devices Meeting, IEDM

Rudolph, Martin R.; Harvey-Collard, P.; Jock, R.; Jacobson, Noah T.; Wendt, J.R.; Pluym, Tammy P.; Dominguez, Jason J.; Ten Eyck, Gregory A.; Manginell, Ronald P.; Lilly, M.P.; Carroll, Malcolm

Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe.

More Details

Valley splitting of single-electron Si MOS quantum dots

Applied Physics Letters

Gamble, John K.; Harvey-Collard, Patrick; Jacobson, Noah T.; Baczewski, Andrew D.; Nielsen, Erik N.; Maurer, Leon; Montano, Ines M.; Rudolph, Martin R.; Carroll, Malcolm; Yang, C.H.; Rossi, A.; Dzurak, A.S.; Muller, Richard P.

Silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physics between the two samples is essentially the same.

More Details

Coupling MOS quantum dot and phosphorous donor qubit systems

IEEE International Electron Devices Meeting

Rudolph, Martin R.; Jock, Ryan M.; Jacobson, Noah T.; Wendt, J.R.; Pluym, Tammy P.; Dominguez, Jason J.; Ten Eyck, Gregory A.; Manginell, Ronald P.; Lilly, Michael L.; Carroll, Malcolm; Harvey-Collard, Patrick H.

Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe.

More Details

Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer

Applied Physics Letters

Lu, Tzu-Ming L.; Gamble, John K.; Muller, Richard P.; Nielsen, Erik N.; Bethke, D.; Ten Eyck, Gregory A.; Pluym, Tammy P.; Wendt, J.R.; Dominguez, Jason J.; Lilly, M.P.; Carroll, Malcolm; Wanke, M.C.

Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. The device uses only a single metal-gate layer, greatly simplifying device design and fabrication.

More Details

Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

Applied Physics Letters

Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; Bishop, N.C.; Ten Eyck, Gregory A.; Pluym, Tammy P.; Wendt, J.R.; Lilly, M.P.; Carroll, Malcolm

We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ∼9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ∼ 2.7 × 10 3, the power dissipation of the amplifier is 13 μW, the bandwidth is ∼ 1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/ Hz. With this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.

More Details
Results 51–100 of 316
Results 51–100 of 316