Publications

Results 1–25 of 45
Skip to search filters

Daily operation of Z: an 80 TW 36-module pulsed power driver

Savage, Mark E.; Cuneo, M.E.; Davis, Jean-Paul D.; Hutsel, Brian T.; Jones, Michael J.; Jones, Peter A.; Kamm, Ryan J.; Lopez, Michael R.; Matzen, M.K.; McDaniel, D.H.M.; McKee, George R.; Maenchen, J.E.M.; Owen, A.C.O.; Porter, John L.; Prestwich, K.R.P.; Schwarz, Jens S.; Sinars, Daniel S.; Stoltzfus, Brian S.; Struve, Kenneth W.; Stygar, William A.; Wakeland, P.; White, William M.

Abstract not provided.

Conceptual designs of 300-TW and 800-TW pulsed-power accelerators

Stygar, William A.; Fowler, William E.; Gomez, Matthew R.; Harmon, Roger L.; Herrmann, Mark H.; Huber, Dale L.; Hutsel, Brian T.; Bailey, James E.; Jones, Michael J.; Jones, Peter A.; Leckbee, Joshua L.; Lee, James R.; Lewis, Scot A.; Long, Finis W.; Lopez, Mike R.; Lucero, Diego J.; Matzen, M.K.; Mazarakis, Michael G.; McBride, Ryan D.; McKee, George R.; Nakhleh, Charles N.; Owen, Albert C.; Rochau, G.A.; Savage, Mark E.; Schwarz, Jens S.; Sefkow, Adam B.; Sinars, Daniel S.; Stoltzfus, Brian S.; Vesey, Roger A.; Wakeland, P.; Cuneo, M.E.; Flicker, Dawn G.; Focia, Ronald J.

Abstract not provided.

Pulsed-power driven inertial confinement fusion development at Sandia National Laboratories

Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.

Cuneo, M.E.; Mazarakis, Michael G.; Lamppa, Derek C.; Kaye, Ronald J.; Nakhleh, Charles N.; Bailey, James E.; Hansen, Stephanie B.; McBride, Ryan D.; Herrmann, Mark H.; Lopez, A.; Peterson, Kyle J.; Ampleford, David A.; Jones, Michael J.; Savage, Mark E.; Jennings, Christopher A.; Martin, Matthew; Slutz, Stephen A.; Lemke, Raymond W.; Christenson, Peggy J.; Sweeney, Mary A.; Jones, Brent M.; Yu, Edmund Y.; McPherson, Leroy A.; Harding, Eric H.; Knapp, Patrick K.; Gomez, Matthew R.; Awe, Thomas J.; Stygar, William A.; Leeper, Ramon J.; Ruiz, Carlos L.; Chandler, Gordon A.; Mckenney, John M.; Owen, Albert C.; McKee, George R.; Matzen, M.K.; Leifeste, Gordon T.; Atherton, B.W.; Vesey, Roger A.; Smith, Ian C.; Geissel, Matthias G.; Rambo, Patrick K.; Sinars, Daniel S.; Sefkow, Adam B.; Rovang, Dean C.; Rochau, G.A.

Abstract not provided.

Plasma power station with quasi spherical direct drive capsule for fusion yield and inverse diode for driver-target coupling

Fusion Science and Technology

VanDevender, J.P.; Cuneo, M.E.; Slutz, S.A.; Herrmann, Mark H.; Vesey, Roger A.; Sinars, Daniel S.; Seidel, David B.; Schneider, Larry X.; Mikkelson, Kenneth A.; Harper-Slaboszewicz, V.H.; Peyton, B.P.; Sefkow, Adam B.; Matzen, M.K.

The Meier-Moir economic model for Pulsed Power Driven Inertial Fusion Energy shows at least two approaches for fusion energy at 7 to 8 cents/kw-hr: One with large yield at 0.1 Hz and presented by M. E. Cuneo at ICENES 2011 and one with smaller yield at 3 Hz presented in this paper. Both use very efficient and low cost Linear Transformer Drivers (LTDs) for the pulsed power. We report the system configuration and end-toend simulation for the latter option, which is called the Plasma Power Station (PPS), and report the first results on the two, least mature, enabling technologies: a magnetically driven Quasi Spherical Direct Drive (QSDD) capsule for the fusion yield and an Inverse Diode for coupling the driver to the target. In addition, we describe the issues and propose to address the issues with a prototype of the PPS on the Saturn accelerator and with experiments on a short pulse modification of the Z accelerator test the validity of simulations showing megajoule thermonuclear yield with DT on a modified Z.

More Details

Plasma Power Station with Quasi Spherical Direct Drive Capsule for Fusion Yield and Inverse Diode for Driver-Target Coupling

Fusion Science and Technology

Cuneo, M.E.; Matzen, M.K.; Sinars, Daniel S.; Slutz, Stephen A.; Herrmann, Mark H.; Vesey, Roger A.; Seidel, David B.; Schneider, Larry X.; Mikkelson, Kenneth A.; Harper-Slaboszewicz, V.H.; Sefkow, Adam B.

The Meier-Moir economic model for Pulsed Power Driven Inertial Fusion Energy shows at least two approaches for fusion energy at 7 to 8 cents/kw-hr: One with large yield at 0.1 Hz and presented by M. E. Cuneo at ICENES 2011 and one with smaller yield at 3 Hz presented in this paper. Both use very efficient and low cost Linear Transformer Drivers (LTDs) for the pulsed power. Here, we report the system configuration and end-to-end simulation for the latter option, which is called the Plasma Power Station (PPS), and report the first results on the two, least mature, enabling technologies: a magnetically driven Quasi Spherical Direct Drive (QSDD) capsule for the fusion yield and an Inverse Diode for coupling the driver to the target. In addition, we describe the issues and propose to address the issues with a prototype of the PPS on the Saturn accelerator and with experiments on a short pulse modification of the Z accelerator test the validity of simulations showing megajoule thermonuclear yield with DT on a modified Z.

More Details

The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI

Mazarakis, Michael G.; Fowler, William E.; Matzen, M.K.; McDaniel, Dillon H.; McKee, George R.; Savage, Mark E.; Struve, Kenneth W.; Stygar, William A.; Woodworth, Joseph R.

Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores and other cavity components. Experimental results will be presented at the Conference and in future publications.

More Details
Results 1–25 of 45
Results 1–25 of 45