Publications

Results 301–350 of 365
Skip to search filters

Linear and nonlinear evolution of azimuthal clumping instabilities in a Z-pinch wire array

Physics of Plasmas

Tang, Wilkin; Strickler, T.S.; Lau, Y.Y.; Gilgenbach, R.M.; Zier, Jacob; Gomez, M.R.; Yu, Edmund Y.; Garasi, Christopher J.; Cuneo, M.E.; Mehlhorn, Thomas A.

This paper presents an analytic theory on the linear and nonlinear evolution of the most unstable azimuthal clumping mode, known as the pi-mode, in a discrete wire array. In the pi-mode, neighboring wires of the array pair-up as a result of the mutual attraction of the wires which carry current in the same direction. The analytic solution displays two regimes, where the collective interactions of all wires dominate, versus where the interaction of the neighboring, single wire dominates. This solution was corroborated by two vastly different numerical codes which were used to simulate arrays with both high wire numbers (up to 600) and low wire number (8). All solutions show that azimuthal clumping of discrete wires occurs before appreciable radial motion of the wires. Thus, absence of azimuthal clumping of wires in comparison with the wires' radial motion may imply substantial lack of wire currents. While the present theory and simulations have ignored the plasma corona and axial variations, it is argued that their effects, and the complete account of the three-dimensional feature of the pi-mode, together with a scaling study of the wire number, may be expediently simulated by using only one single wire in an annular wedge with a reflection condition imposed on the wedge's boundary. © 2007 American Institute of Physics.

More Details

Architecture of petawatt-class z-pinch accelerators

Physical Review Special Topics - Accelerators and Beams

Stygar, William A.; Cuneo, M.E.; Headley, D.I.; Ives, H.C.; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, C.L.; Porter, J.L.; Wagoner, T.C.; Woodworth, J.R.

We have developed an accelerator architecture that can serve as the basis of the design of petawatt-class z-pinch drivers. The architecture has been applied to the design of two z-pinch accelerators, each of which can be contained within a 104-m-diameter cylindrical tank. One accelerator is driven by slow (∼1μs) Marx generators, which are a mature technology but which necessitate significant pulse compression to achieve the short pulses (1μs) required to drive z pinches. The other is powered by linear transformer drivers (LTDs), which are less mature but produce much shorter pulses than conventional Marxes. Consequently, an LTD-driven accelerator promises to be (at a given pinch current and implosion time) more efficient and reliable. The Marx-driven accelerator produces a peak electrical power of 500 TW and includes the following components: (i) 300 Marx generators that comprise a total of 1.8×104 capacitors, store 98 MJ, and erect to 5 MV; (ii) 600 water-dielectric triplate intermediate-store transmission lines, which also serve as pulse-forming lines; (iii) 600 5-MV laser-triggered gas switches; (iv) three monolithic radial-transmission-line impedance transformers, with triplate geometries and exponential impedance profiles; (v) a 6-level 5.5-m-diameter 15-MV vacuum insulator stack; (vi) six magnetically insulated vacuum transmission lines (MITLs); and (vii) a triple-post-hole vacuum convolute that adds the output currents of the six MITLs, and delivers the combined current to a z-pinch load. The accelerator delivers an effective peak current of 52 MA to a 10-mm-length z pinch that implodes in 95 ns, and 57 MA to a pinch that implodes in 120 ns. The LTD-driven accelerator includes monolithic radial transformers and a MITL system similar to those described above, but does not include intermediate-store transmission lines, multimegavolt gas switches, or a laser trigger system. Instead, this accelerator is driven by 210 LTD modules that include a total of 1×106 capacitors and 5×105 200-kV electrically triggered gas switches. The LTD accelerator stores 182 MJ and produces a peak electrical power of 1000 TW. The accelerator delivers an effective peak current of 68 MA to a pinch that implodes in 95 ns, and 75 MA to a pinch that implodes in 120 ns. Conceptually straightforward upgrades to these designs would deliver even higher pinch currents and faster implosions. © 2007 The American Physical Society.

More Details

Wire initiation critical for radiation symmetry in Z-pinch-driven dynamic hohlraums

Physical Review Letters

Sanford, T.W.L.; Jennings, C.A.; Rochau, G.A.; Rosenthal, Stephen E.; Sarkisov, G.S.; Sasorov, P.V.; Stygar, William A.; Bennett, Lawrence F.; Bliss, David E.; Chittenden, J.P.; Cuneo, M.E.; Haines, M.G.; Leeper, Ramon J.; Mock, R.C.; Nash, Thomas J.; Peterson, D.L.

Axial symmetry in x-ray radiation of wire-array z pinches is important for the creation of dynamic hohlraums used to compress inertial-confinement-fusion capsules. We present the first evidence that this symmetry is directly correlated with the magnitude of the negative radial electric field along the wire surface. This field (in turn) is inferred to control the initial energy deposition into the wire cores, as well as any current shorting to the return conductor. © 2007 The American Physical Society.

More Details

Towards a predictive MHD simulation capability for designing hypervelocity magnetically-driven flyer plates and PWclass z-pinch x-ray sources on Z and ZR

Mehlhorn, Thomas A.; Yu, Edmund Y.; Vesey, Roger A.; Cuneo, M.E.; Jones, Brent M.; Knudson, Marcus D.; Sinars, Daniel S.; Robinson, Allen C.; Trucano, Timothy G.; Brunner, Thomas A.; Desjarlais, Michael P.; Garasi, Christopher J.; Haill, Thomas A.; Hanshaw, Heath L.; Lemke, Raymond W.; Oliver, Bryan V.; Peterson, Kyle J.

Abstract not provided.

1- and 2-frame monochromatic x-ray imaging of NIF-like capsules on Z and future higher-energy higher-resolution 2- & 4-frame x-radiography plans for ZR

Bennett, Guy R.; Campbell, David V.; Claus, Liam D.; Foresi, James S.; Johnson, Drew J.; Jones, Michael J.; Keller, Keith L.; Leifeste, Gordon T.; McPherson, Leroy A.; Mulville, Thomas D.; Neely, Kelly A.; Sinars, Daniel S.; Herrmann, Mark H.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Simpson, Walter W.; Speas, Christopher S.; Wenger, D.F.; Smith, Ian C.; Cuneo, M.E.; Adams, Richard G.; Atherton, B.W.; Barnard, Wilson J.; Beutler, David E.; Burr, Robert A.

Abstract not provided.

Measurement of the energy and power radiated by a pulsed blackbody x-ray source

Proposed for publication in Physical Review E.

Stygar, William A.; Leeper, Ramon J.; Mazarakis, Michael G.; McDaniel, Dillon H.; Mckenney, John M.; Mills, Jerry A.; Ruggles, Larry R.; Seamen, Johann F.; Simpson, Walter W.; Dropinski, Steven D.; Warne, Larry K.; York, Matthew W.; McGurn, John S.; Bryce, Edwin A.; Chandler, Gordon A.; Cuneo, M.E.; Johnson, William Arthur.; Jorgenson, Roy E.

We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-{micro}m-diameter pinholes in a 50-{micro}m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of {approx}1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented.

More Details

Z-pinch requirements for achieving high yield fusion via a z-pinch driven, double ended hohlraum concept

2006 International Conference on Megagauss Magnetic Field Generation and Related Topics, including the International Workshop on High Energy Liners and High Energy Density Applications, MEGAGAUSS

Lemke, Raymond W.; Vesey, Roger A.; Cuneo, M.E.; Desjarlais, Michael P.; Mehlhorn, Thomas A.

Using two-dimensional (2D), radiation magnetohydrodynamics (RMHD) numerical simulations, we have designed a feasible z-pinch radiation source that ignites a high yield fuel capsule in a z-pinch driven, double ended hohlraum concept. The z-pinch is composed of nested beryllium (Be) shells and a coaxial, cylindrical foam converter. The z-pinch is designed to produce a shaped radiation pulse that compresses a capsule by a sequence of three shocks without significant entropy increase. We present results of simulations pertaining to the z-pinch design, and discuss conditions that must be achieved in the z-pinch to ensure production of the required radiation pulse. © 2008 IEEE.

More Details

Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double z-pinch driven hohlraums

Proposed for publication in Plasma Physics and Controlled Fusion.

Cuneo, M.E.; Nash, Thomas J.; Yu, Edmund Y.; Mehlhorn, Thomas A.; Matzen, M.K.; Vesey, Roger A.; Bennett, Guy R.; Sinars, Daniel S.; Stygar, William A.; Rambo, Patrick K.; Smith, Ian C.; Bliss, David E.

Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 {+-} 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

More Details

A model for ablated plasma width applied to peak X-ray power scaling for Z-pinch wire array implosions

Stygar, William A.; Cuneo, M.E.

We present the solution of a 1D radial MHD model of the plasma ablated from multi-MA wire array implosions extending a recently obtained steady state solution [J.P. Chittenden, et al. Phys. Plasmas 11, 1118 (2004)] to a driving current that is exponential in time. We obtain a solution for the flow in almost analytical form by reducing the partial differential equations to a set of ordinary differential equations with a single parameter. We compute the mass weighted density width, and find the regime in which it agrees to a few percent with that of a simpler approximation to the ablated plasma flow, for which the driving current is linear in time, and the flow velocity constant. Assuming that the density width at the end of the ablation period is proportional to width of the plasma sheath at stagnation, we obtain a scaling relationship for peak X-ray power. We compare this relationship to experimental peak X-ray powers for tungsten wire arrays on the Z pulsed power generator of Sandia National Laboratories, and to previously proposed scaling hypotheses. We also use this scaling to project peak X-ray powers on ZR, a higher peak current modification of Z, presently under design.

More Details

Tungsten wire number dependence of the implosion dynamics at the Z-accelerator

Plasma Devices and Operations

Mazarakis, Michael G.; Deeney, C.E.; Douglas, M.R.; Stygar, William A.; Sinars, Daniel S.; Cuneo, M.E.; Chittenden, J.; Chandler, G.A.; Nash, T.J.; Struve, K.W.; McDaniel, D.H.

In this paper, we report the results of an experimental campaign to study the initiation, implosion dynamics and radiation yield of tungsten wire arrays as a function of the wire number. An optimization study of the X-ray emitted peak power, rise time and FWHM was effectuated by varying the wire number while keeping the total array mass constant at ∼5.8mg. The driver used was the ∼20MA Z-accelerator, in its usual short pulse mode of 100ns. We studied single arrays of diameter 20mm and height 10mm. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest wire number achievable with present-day technology. Radial and axial diagnostics were used, including a crystal monochromatic X-ray backlighter. An optimum wire number of ∼370 was observed, which is very close to the number (300) routinely used for the ICF program in Sandia. © 2005 Taylor & Francis Group Ltd.

More Details

Increasing Z-pinch vacuum hohlraum capsule coupling efficiency

Vesey, Roger A.; Cuneo, M.E.; Bennett, Guy R.; Mehlhorn, Thomas A.

Symmetric capsule implosions in the double-ended vacuum hohlraum (DEH) on Z have demonstrated convergence ratios of 14-21 for 2.15-mm plastic ablator capsules absorbing 5-7 kJ of x-rays, based on backlit images of the compressed ablator remaining at peak convergence [1]. Experiments with DD-filled 3.3-mm diameter capsules designed to absorb 14 kJ of x-rays have begun as an integrated test of drive temperature and symmetry, complementary to thin-shell symmetry diagnostic capsules. These capsule implosions are characterized by excellent control of symmetry (< 3% time-integrated), but low hohlraum efficiency (< 2%). Possible methods to increase the capsule absorbed energy in the DEH include mixed-component hohlraums, large diameter foam ablator capsules, transmissive shine shields between the z-pinch and capsule, higher spoke electrode x-ray transmission, a double-sided power feed, and smaller initial radius z-pinch wire arrays. Simulations will explore the potential for each of these modifications to increase the capsule coupling efficiency for near-term experiments on Z and ZR.

More Details

Mass profile and instability growth measurements for 300-wire z-pinch implosions driven by 14-18, MA

Proposed for publication in Physical Review Letters.

Sinars, Daniel S.; Cuneo, M.E.; Yu, Edmund Y.; Bliss, David E.; Nash, Thomas J.; Deeney, Christopher D.; Mazarakis, Michael G.; Wenger, D.F.

We present the first comprehensive study of high wire-number, wire-array Z-pinch dynamics at 14-18 MA using x-ray backlighting and optical shadowgraphy diagnostics. The cylindrical arrays retain slowly expanding, dense wire cores at the initial position up to 60% of the total implosion time. Azimuthally correlated instabilities at the array edge appear during this stage which continue to grow in amplitude and wavelength after the start of bulk motion, resulting in measurable trailing mass that does not arrive on axis before peak x-ray emission.

More Details

Progress in Z-Pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories

Sanford, Thomas W.; Cuneo, M.E.; Leeper, Ramon J.; Matzen, M.K.; Mehlhorn, Thomas A.; Slutz, Stephen A.; Nash, Thomas J.; Stygar, William A.; Olson, Richard E.; Olson, Craig L.; Bliss, David E.; Lemke, Raymond W.; Ruiz, Carlos L.; Bailey, James E.; Chandler, Gordon A.

Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions.

More Details
Results 301–350 of 365
Results 301–350 of 365