Understanding electrode plasma formation on wires and thin foils via vacuum ultraviolet spectroscopy of desorbed surface contaminants
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Z Machine at Sandia National Laboratories uses current pulses with peaks up to 27 MA to drive target implosions and generate high energy density conditions of interest for stockpile stewardship programs pertinent to the NNSA program portfolio . Physical processes in the region near the Z Machine target create electrode plasmas which seed parasitic current loss that reduce the performance and output of a Z experiment. Electrode surface contaminants (hydrogen, water, hydrocarbons) are thought to be the primary constituent of electrode plasmas which contribute to loss mechanisms. The Sandia team explore d in situ heating and plasma discharge techniques by integrating requisite infrastructure into Sandia's Mykonos LTD accelerator, addressing potential impacts to accelerator operation, and reporting on the impact of these techniques on electrode plasma formation and shot performance. The in situ discharge cleaning utilizes the electrodes of the accelerator to excite an argon-oxygen plasma to sputter and chemically react contaminants from electrode surfaces. Insulating breaks are required to isolate the plasma in electrode regions where loss processes are most likely to occur. The shots on Mykonos validate that these breaks do not perturb experiment performance, reducing the uncertainty on the largest unknown about the in situ cleaning system. Preliminary observations with electrical and optical diagnostics suggest that electrode plasma formation is delayed, and overall inventory has been substantively reduced. In situ heating embeds cartridge heaters into accelerator electrodes and employs a thermal bakeout to rapidly desorb contaminants from electrode surfaces. For the first time, additively manufactured (AM) electrode assemblies were used on a low impedance accelerator to integrate cooling channels and manage thermal gradients. Challenges with poor supplier fabrication to specifications, load alignment, thermal expansion and hardware movement and warpage appears to have introduced large variability in observed loss, though, preventing strong assertions of loss reduction via in situ heating. At this time, an in situ discharge cleaning process offers the lowest risk path to reduce electrode contaminant inventories on Z, though we recommend continuing to develop both approaches. Additional engineering and testing are required to improve the implementation of both systems. .
IEEE International Conference on Plasma Science
Power flow studies on the 30-MA, 100-ns Z facility at Sandia National Laborat ories (SNL) have shown that plasmas in the facility's magnetically insulated transmission lines (MITLs) can result in a loss of current delivered to the load. 1 During the current pulse, thermal energy deposition into the electrodes (ohmic heating, charged particle bombardment, etc.) causes neutral surface contaminants layers (water, hydrogen, hydrocarbons, etc.) to desorb, ionize, and form plasmas in the anode-cathode (AK) gap. 2 Shrinking typical ele ctrode thicknesses (~1 cm) down to that of thin foils (5-200 μm) produces observable amounts of plasma on smaller pulsed power drivers (≤1 MA). 3 We suspect that as the electrode material bulk thickness decreases relative to the skin depth of the current pulse (50-100 μm for a 100-500-ns pulse in aluminum), the thermal energy delivered to the neutral surface contaminant layers increases, and thus more surface contaminants desorb from the current carrying surface.
Abstract not provided.
Physical Review Accelerators and Beams
Kinetic simulations of Sandia National Laboratories' Z machine are conducted to understand particle transport in the highly magnetized environment of a multi-MA accelerator. Joule heating leads to the rapid formation of electrode surface plasmas. These plasmas are implicated in reducing accelerator efficiency by diverting current away from the load [M.R. Gomez et al., Phys. Rev. Accel. Beams 20, 010401 (2017)PRABCJ2469-988810.1103/PhysRevAccelBeams.20.010401, N. Bennett et al., Phys. Rev. Accel. Beams 22, 120401 (2019)PRABCJ2469-988810.1103/PhysRevAccelBeams.22.120401]. The fully-relativistic, electromagnetic simulations presented in this paper show that particles emitted in a space-charge-limited manner, in the absence of plasma, are magnetically insulated. However, in the presence of plasma, particles are transported across the magnetic field in spite of being only weakly collisional. The simulated cross-gap currents are well-approximated by the Hall current in the generalized Ohm's law. The Hall conductivities are calculated using the simulated particle densities and energies, and the parameters that increase the Hall current are related to transmission line inductance. Analogous to the generalized Ohm's law, we extend the derivation of the magnetized diffusion coefficients to include the coupling of perpendicular components. These yield a Hall diffusion rate, which is equivalent to the empirical Bohm diffusion.
This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE International Pulsed Power Conference
Herein we describe the design, simulation and performance of a 118-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 to 24 'Bricks'. Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bi-polar charged to a total of 200 kV. Typical brick circuit parameters are 40 nF (two 80 nF capacitors in series) and 160 nH inductance. Over the course of over 10,000 shots the cavity generated a peak electrical current and power of 1.19 MA and 118 GW.
Physical Review Accelerators and Beams
We introduce a 1D planar static model to elucidate the underlying mechanism of large ion current losses in the vacuum convolute and the inner magnetically insulated transmission line (MITL) of the Z machine. We consider E × B electron flow, parallel to the electrodes, and ion motion across the vacuum gap, for given voltage V, gap distance d, anode magnetic field B a, and vacuum electron current Δ I. This model has been introduced and solved before by Desjarlais [Phys. Rev. Lett. 59, 2295 (1987)] for the applied magnetic field ion diode. Here we apply it to convolute and inner MITL ion losses of Z, relaxing the fix magnetic flux condition of that reference. In the absence of ions we show that the electron vacuum flow must be close to the anode if its current exceeds the value given by the local flow impedance, implying high electric fields there. We then introduce space charge limited ion emission from the anode, neglecting the magnetic force on ions. We obtain the solution of the steady state equations for two special cases: (a) when both the electric potential and the electric field are zero inside the gap, and there is a layer of electrons not carrying current that neutralizes the ion charge between the virtual and the electrode cathode, making that region electric field free, and (b) when the electric field is zero inside the gap, but the potential is not, and zero electron charge between that point and the physical cathode. For case (a) we obtain an ion current density which we conjecture is the maximum attainable for any electron charge distribution in the electron current carrying layer, given V, d, Ba, Δ I an ion species. We obtain the enhancement factor for both cases with respect to the ion-only Child-Langmuir ion current density, and show that it can be significantly larger than that of the electron saturated flow case. Furthermore, imposing electron current conservation as the flow enters the inner MITL from the four outer MITLs, we recover the well-known dependence jion ~ V3/2 / d2, where voltage and gap are taken near the joining point of those outer MITLs. The implications and limitations of the proposed model are discussed.
Physical Review Accelerators and Beams
Here we present details of the design, simulation, and performance of a 100-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 “bricks.” Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bipolar charged to ±100 kV for a total switch voltage of 200 kV. Typical brick circuit parameters are 40 nF capacitance (two 80 nF capacitors in series) and 160 nH inductance. The switch electrodes are fabricated from a WCu alloy and are operated with breathable air. Over the course of 6,556 shots the cavity generated a peak electrical current and power of 1.03 MA (±1.8%) and 106 GW (±3.1%). Experimental results are consistent (to within uncertainties) with circuit simulations for normal operation, and expected failure modes including prefire and late-fire events. New features of this development that are reported here in detail include: (1) 100 ns, 1 MA, 100-GW output from a 2.2 m diameter LTD into a 0.1 Ω load, (2) high-impedance solid charging resistors that are optimized for this application, and (3) evaluation of maintenance-free trigger circuits using capacitive coupling and inductive isolation.
Physics of Plasmas
In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy for the determination of the magnetic field in the anode plasma in the Sandia 10 MV, 200 kA (RITS-6) electron beam diode. The magnetic field is determined from the Zeeman-dominated shapes of the Al III 4s-4p and C IV 3s-3p doublet emissions from various radial positions. Near the anode surface, due to the high plasma density, the spectral line-shapes are Stark-dominated, and only an upper limit of the magnetic field can be determined. The line-shape analysis also yields the plasma density. The data yield quantitatively the magnetic-field shielding in the plasma. The magnetic-field distribution in the plasma is compared to the field-diffusion prediction and found to be consistent with the Spitzer resistivity, estimated using the electron temperature and charge-state distribution determined from line intensity ratios.
Physics of Plasmas
The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
The results presented here were obtained with a self-magnetic pinch (SMP) diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The RITS driver together with the SMP diode has produced x-ray spots of the order of 1 mm in diameter and doses adequate for the radiographic imaging of high area density objects. Although, through the years, a number of different types of radiographic electron diodes have been utilized with SABER, HERMES III and RITS accelerators, the SMP diode appears to be the most successful and simplest diode for the radiographic investigation of various objects. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target and second to try to evaluate the energy of those ions and hence the Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the A-K gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (∼1 cm) and the diode region very hostile. The accelerating voltage quoted in the literature is from estimates based on the measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus, it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high-Z metals in order to produce copious and energetic flash x-rays. It was established experimentally that the back-streaming ion currents are a strong function of the anode materials and their stage of cleanness. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment: namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering technique. Experimental results in comparison with LSP simulations are presented.
Physical Review Accelerators and Beams
We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator configurations and load-impedance time histories. For these experiments, the apparent fractional current loss varies from 0% to 20%. Results of the circuit simulations agree with data acquired on 52 shots to within 2%.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with the calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Accelerators and Beams
We have conceived a new class of prime-power sources for pulsed-power accelerators: impedance-matched Marx generators (IMGs). The fundamental building block of an IMG is a brick, which consists of two capacitors connected electrically in series with a single switch. An IMG comprises a single stage or several stages distributed axially and connected in series. Each stage is powered by a single brick or several bricks distributed azimuthally within the stage and connected in parallel. The stages of a multistage IMG drive an impedance-matched coaxial transmission line with a conical center conductor. When the stages are triggered sequentially to launch a coherent traveling wave along the coaxial line, the IMG achieves electromagnetic-power amplification by triggered emission of radiation. Hence a multistage IMG is a pulsed-power analogue of a laser. To illustrate the IMG approach to prime power, we have developed conceptual designs of two ten-stage IMGs with LC time constants on the order of 100 ns. One design includes 20 bricks per stage, and delivers a peak electrical power of 1.05 TW to a matched-impedance 1.22-Ω load. The design generates 113 kV per stage and has a maximum energy efficiency of 89%. The other design includes a single brick per stage, delivers 68 GW to a matched-impedance 19-Ω load, generates 113 kV per stage, and has a maximum energy efficiency of 90%. For a given electrical-power-output time history, an IMG is less expensive and slightly more efficient than a linear transformer driver, since an IMG does not use ferromagnetic cores.
Abstract not provided.
The purpose of this project was to develop new physical simulation capabilities in order to support the science-based qualification of nonnuclear weapon components in hostile radiation environments. The project contributes directly to the goals of maintaining a safe, secure, and effective US nuclear stockpile, maintaining strategic deterrence at lower nuclear force levels, extending the life of the nuclear deterrent capability, and to be ready for technological surprise.
Physics of Plasmas
Double-shell Ar gas puff implosions driven by 16.5 ± 0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ [B. Jones et al., Phys. Plasmas 22, 020706 (2015)]. Previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations. We report on a series of experiments on Z testing Ar gas puff configurations with and without an on-axis jet guided by 3D magneto-hydrodynamic (MHD) simulations. Adding an on-axis jet was found to significantly improve the performance of some, but not all, configurations. The maximum observed K-shell yield of 375 ± 9% kJ was produced with a configuration that rapidly imploded onto an on-axis jet. A dramatic difference was observed in the plasma conditions at stagnation when a jet was used, producing a narrower stagnation column in experiments with a higher density but relatively lower electron temperature. The MHD simulations accurately reproduce the experimental measurements. The conversion efficiency for electrical energy delivered to the load to K-shell x-rays is estimated to be ∼12.5% for the best-performing configuration, similar to the best results from experiments at smaller facilities.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Accelerators and Beams
We describe the study we have undertaken to evaluate the effect of component tolerances in obtaining a voltage output flat top for a linear transformer driver (LTD) cavity containing 3rd and 5th harmonic bricks [A. A. Kim et al., in Proc. IEEE Pulsed Power and Plasma Science PPPS2013 (San Francisco, California, USA, 2013), pp. 1354-1356.] and for 30 cavity voltage adder. Our goal was to define the necessary component value precision in order to obtain a voltage output flat top with no more than ±0.5% amplitude variation.
The Thor pulsed power generator is being developed at Sandia National Laboratories . The design consists of up to 288 decoupled an d transit time isolated ca pacitor - switch units , called "bricks" , that can be individually triggered to achieve a high degree of p ulse tailoring for magnetically - driven isentropic compression experiments (ICE). The connecting transmission lines are impedance matched to the bricks, a llowing the capacitor energy to be efficiently delivered to an ICE strip - line load with pe ak pressures of over 100 GPa . Thor will drive experiments to expl ore equation of state, material strength, and phase transition properties of a wide variety of materi als. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator . This technique, which is unique to the novel "current - adder" architecture used by Thor, entirely avoids the itera tive use of complex circuit models to converge to the desired electrical pulse . We describe the optimization procedure for the Thor design and show results for various materials of interest. Also, we discuss the extension of these concepts to the megajoule - class Neptune machine design. Given this design, we are able to design shockless ramp - driven experiments in the 1 TPa range of material pressure.
Abstract not provided.
Abstract not provided.
Physical Review Accelerators and Beams
In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physics: Conference Series
Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.
Abstract not provided.
We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing and fabricating novel micro B-dot probes to measure B z ( t ) inside of an imploding liner. In one approach, the micro B-dot loops were fabricated on a printed circuit board (PCB). The PCB was then soldered to off-the-shelf 0.020- inch-diameter semi-rigid coaxial cables, which were terminated with standard SMA connectors. These probes were recently tested using the COBRA pulsed power generator (0-1 MA in 100 ns) at Cornell University. In another approach, we are planning to use new multi-material 3D printing capabilities to fabricate novel micro B-dot packages. In the near future, we plan to 3D print these probes and then test them on the COBRA generator. With successful operation demonstrated at 1-MA, we will then make plans to use these probes on a 20-MA Z experiment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Plasma Science
Radial wire array Z-pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright X-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicate that at 7 MA, radial wire arrays can radiate ∼9 TW with 10-ns full-width at half-maximum from a compact pinch.
Abstract not provided.
IEEE Transactions on Plasma Science
By varying current-loss circuit parameters, the Mach2-tabular collisional radiative equilibrium 2-D radiation magnetohydrodynamic model was tuned to reproduce the radiative and electrical properties of three recent argon gas-puff experiments (same initial conditions) performed on the Z machine at Sandia National Laboratories. The model indicates that there were current losses occurring near or within the diode region of the Z machine during the stagnation phase of the implosion. The 'good' simulation reproduces the experimental K-shell powers, K-shell yields, total powers, percentage of emission radiated in α lines, size of the K-shell emission region, and the average electron temperature near the time-of-peak K-shell power. The calculated atomic populations, ion temperatures, and radial velocities are used as input to a detailed multifrequency ray-trace radiation transport model that includes the Doppler effect. This model is employed to construct time-, space-, and energy-resolved synthetic spectra. The role the Doppler effect likely plays in the experiments is demonstrated by comparing synthetic spectra generated with and without this effect.
IEEE Transactions on Plasma Science
In developing stainless-steel (SS) and copper wire-array X-ray sources on the Z machine, we consider the optimization of K-shell yield as a function of load height. Theory, numerical modeling, and experimental data suggest that an optimum exists corresponding to a tradeoff between the increase in radiating mass and the decrease in coupled current with increasing pinch height. A typical load height of 20 mm used on many previous Z wire-array X-ray sources is found to be near optimal for K-shell yield production in SS and copper implosions. Electrical data, pinhole imaging, and spectroscopy are used to study plasma conditions in wire-array z pinches corresponding to the variation in K-shell power and yield per unit length as the pinch height is changed from 12 to 24 mm.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
Large diameter multi-shell gas puffs rapidly imploded by high current (∼20 MA, ∼100ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ∼13keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh-Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.
Physics of Plasmas
By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG cm, a ∼ 14x increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.
Physics of Plasmas
Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.
Abstract not provided.
Physics of Plasmas
The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100-ns Z machine, the 2.5-kJ, 1 TW Z Beamlet laser, and the 10-T Applied B-field on Z system. Despite an estimated implosion velocity of only 70-km/s in these experiments, electron and ion temperatures at stagnation were as high as 3-keV, and thermonuclear deuterium-deuterium neutron yields up to 2-×-1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6-8-mm) and lasted approximately 2-ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2-0.4-g/cm3. In these experiments, up to 5-×-1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1-2-mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1-keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.
Sandia journal manuscript; Not yet accepted for publication
The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
Argon gas puffs have produced 330kJ ± 9% of x-ray radiation above 3keV photon energy in fast z-pinch implosions, with remarkably reproducible K-shell spectra and power pulses. This reproducibility in x-ray production is particularly significant in light of the variations in instability evolution observed between experiments. Soft x-ray power measurements and K-shell line ratios from a time-resolved spectrum at peak x-ray power suggest that plasma gradients in these high-mass pinches may limit the K-shell radiating mass, K-shell power, and K-shell yield from high-current gas puffs.
ICOPS/BEAMS 2014 - 41st IEEE International Conference on Plasma Science and the 20th International Conference on High-Power Particle Beams
Abstract not provided.
Physical Review Special Topics - Accelerators and Beams
Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R.D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient transmission of large currents through the MITLs on Z. Taken together, the two studies demonstrate the overall efficient delivery of very large electrical powers through the MITLs on Z.
Review of Scientific Instruments
Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.
Physical Review Letters
This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Physics of Plasmas
Recent experiments on the Z accelerator have produced high-energy (17 keV) inner-shell K-alpha emission from molybdenum wire array z-pinches. Extensive absolute power and spectroscopic diagnostics along with collisional-radiative modeling enable detailed investigation into the roles of thermal, hot electron, and fluorescence processes in the production of high-energy x-rays. We show that changing the dimensions of the arrays can impact the proportion of thermal and non-thermal K-shell x-rays. © 2014 AIP Publishing LLC.
Physical Review Letters
Abstract not provided.
Physics of Plasmas
Abstract not provided.
Physics of Plasmas
Abstract not provided.
Review of Scientific Instruments
Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch implosion experiments at the Z machine with high accuracy. The Z machine is capable of outputting 2 MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments on the Z machine were conducted in which the load and machine configuration were held constant. During this shot series, it was observed that the total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, a Kimfol filtered x-ray diode diagnostic and the total power and energy diagnostic, gave 449 TW and 323 TW, respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring x-ray powers from z-pinch sources. © 2014 AIP Publishing LLC.
Physical Review Letters
Novel experimental data are reported that reveal helical instability formation on imploding z -pinch liners that are premagnetized with an axial field. Such instabilities differ dramatically from the mostly azimuthally symmetric instabilities that form on unmagnetized liners. The helical structure persists at nearly constant pitch as the liner implodes. This is surprising since, at the liner surface, the azimuthal drive field presumably dwarfs the axial field for all but the earliest stages of the experiment. These fundamentally 3D results provide a unique and challenging test for 3D-magnetohydrodynamics simulations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Plasma Science
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Physics of Plasmas
Abstract not provided.
MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.
Abstract not provided.
Proposed for publication in Physical Review Special Topics Accelerators and Beams.
Abstract not provided.
Review of Scientific Instruments
Tests are ongoing to conduct ~20 MA z-pinch implosions on the Z accelerator at Sandia National Laboratory using Ar, Kr, and D2 gas puffs as the imploding loads. The relatively high cost of operations on a machine of this scale imposes stringent requirements on the functionality, reliability, and safety of gas puff hardware. Here we describe the development of a prototype gas puff system including the multiple-shell nozzles, electromagnetic drivers for each nozzle's valve, a UV pre-ionizer, and an inductive isolator to isolate the ~2.4 MV machine voltage pulse present at the gas load from the necessary electrical and fluid connections made to the puff system from outside the Z vacuum chamber. This paper shows how the assembly couples to the overall Z system and presents data taken to validate the functionality of the overall system.
Abstract not provided.
Proposed for publication in Physics of Plasmas.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physics of Plasmas.
Abstract not provided.
Proposed for publication in Physics of Plasmas.
Abstract not provided.
Abstract not provided.
Proposed for publication in Review of Scientific Instruments.
Abstract not provided.
Abstract not provided.
Proposed for publication in IEEE Transactions on Plasma Science.
Abstract not provided.
Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Proposed for publication in Physical Review Letters (or Physics of Plasmas).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Fusion Science and Technology
The Meier-Moir economic model for Pulsed Power Driven Inertial Fusion Energy shows at least two approaches for fusion energy at 7 to 8 cents/kw-hr: One with large yield at 0.1 Hz and presented by M. E. Cuneo at ICENES 2011 and one with smaller yield at 3 Hz presented in this paper. Both use very efficient and low cost Linear Transformer Drivers (LTDs) for the pulsed power. We report the system configuration and end-toend simulation for the latter option, which is called the Plasma Power Station (PPS), and report the first results on the two, least mature, enabling technologies: a magnetically driven Quasi Spherical Direct Drive (QSDD) capsule for the fusion yield and an Inverse Diode for coupling the driver to the target. In addition, we describe the issues and propose to address the issues with a prototype of the PPS on the Saturn accelerator and with experiments on a short pulse modification of the Z accelerator test the validity of simulations showing megajoule thermonuclear yield with DT on a modified Z.
Fusion Science and Technology
The Meier-Moir economic model for Pulsed Power Driven Inertial Fusion Energy shows at least two approaches for fusion energy at 7 to 8 cents/kw-hr: One with large yield at 0.1 Hz and presented by M. E. Cuneo at ICENES 2011 and one with smaller yield at 3 Hz presented in this paper. Both use very efficient and low cost Linear Transformer Drivers (LTDs) for the pulsed power. Here, we report the system configuration and end-to-end simulation for the latter option, which is called the Plasma Power Station (PPS), and report the first results on the two, least mature, enabling technologies: a magnetically driven Quasi Spherical Direct Drive (QSDD) capsule for the fusion yield and an Inverse Diode for coupling the driver to the target. In addition, we describe the issues and propose to address the issues with a prototype of the PPS on the Saturn accelerator and with experiments on a short pulse modification of the Z accelerator test the validity of simulations showing megajoule thermonuclear yield with DT on a modified Z.
Digest of Technical Papers-IEEE International Pulsed Power Conference
A newly invented, multi-megampere inverse diode converts the currents in many electron beams to current in a single Magnetically Insulated Transmission Line (MITL) for driving a common load. Electrons are injected through a transparent anode, cross a vacuum gap, and are absorbed in the cathode of the inverse diode. The cathode current returns to the anode through a load and generates electric and magnetic fields in the anode-cathode gap. Counter streaming electron flow is prevented by self-magnetic insulation in most of the inverse diode and by self-electrostatic insulation where the magnetic field is insufficient. Two-dimensional simulations with a 40 MA, 4 MeV, 40 ns electron beam at 3.5 kA/cm 2 current density, 5 degree beam divergence, and up to 60 degree injection angle show 85% of the injected electron beam current is captured and fed into the MITL. Exploratory experiments with a 2.5 MA, 2.8 MeV, 40 ns electron beam at 2 kA/cm 2at injection normal to the anode gave 70+/-10% collection efficiency in an unoptimized inverse diode. The inverse diode appears to have the potential of coupling multiple pulsed power modules into a common load at rates of change of current ∼1.6× 10 15 A/s required for a fusion energy device called the Plasma Power Station with a Quasi Spherical Direct Drive fusion target. © 2011 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Abstract not provided.
Review of Scientific Instruments
Abstract not provided.
Abstract not provided.
Abstract not provided.
High Energy Density Physics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.