Leveraging Capabilities of the National Laboratories and Academia to Understand the Properties of Warm Dense MgSiO3
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Contributions to Plasma Physics
In these proceedings, we show that time-dependent density functional theory is capable of stopping calculations at the extreme conditions of temperature and pressure seen in warm dense matter. The accuracy of the stopping curves tends to be up to about 20% lower than empirical models that are in use. However, TDDFT calculations are free from fitting parameters and assumptions about the model form of the dielectric function. This work allows the simulation of ion stopping in many materials that are difficult to study experimentally. (© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We lay the foundation for a benchmarking methodology for assessing current and future quantum computers. We pose and begin addressing fundamental questions about how to fairly compare computational devices at vastly different stages of technological maturity. We critically evaluate and offer our own contributions to current quantum benchmarking efforts, in particular those involving adiabatic quantum computation and the Adiabatic Quantum Optimizers produced by D-Wave Systems, Inc. We find that the performance of D-Wave's Adiabatic Quantum Optimizers scales roughly on par with classical approaches for some hard combinatorial optimization problems; however, architectural limitations of D-Wave devices present a significant hurdle in evaluating real-world applications. In addition to identifying and isolating such limitations, we develop algorithmic tools for circumventing these limitations on future D-Wave devices, assuming they continue to grow and mature at an exponential rate for the next several years.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Chemical Theory and Computation
Abstract not provided.
Physical Review B - Condensed Matter and Materials Physics
We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Finally, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.
Physical Review B - Condensed Matter and Materials Physics
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing density functional theory (DFT) and quantum Monte Carlo (QMC) treatments. The method is applied to address the longstanding discrepancy between DFT calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, in contrast to DAC data.
Journal of Chemical Theory and Computation
van der Waals forces are notoriously difficult to account for from first principles. We have performed extensive calculations to assess the usefulness and validity of diffusion quantum Monte Carlo when predicting van der Waals forces. We present converged results for noble gas solids and clusters, archetypical van der Waals dominated systems, as well as the highly relevant π-π stacking supramolecular complex: DNA + intercalating anticancer drug ellipticine. Analysis of the calculated binding energies underscores the existence of significant interatomic many-body contributions. © 2014 American Chemical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.
Physical Review. B, Condensed Matter and Materials Physics
We apply diffusion quantum Monte Carlo to a broad set of solids, benchmarking the method by comparing bulk structural properties (equilibrium volume and bulk modulus) to experiment and density functional theory (DFT) based theories. The test set includes materials with many different types of binding including ionic, metallic, covalent, and van der Waals. We show that, on average, the accuracy is comparable to or better than that of DFT when using the new generation of functionals, including one hybrid functional and two dispersion corrected functionals. The excellent performance of quantum Monte Carlo on solids is promising for its application to heterogeneous systems and high-pressure/high-density conditions. Important to the results here is the application of a consistent procedure with regards to the several approximations that are made, such as finite-size corrections and pseudopotential approximations. This test set allows for any improvements in these methods to be judged in a systematic way.