Publications

Results 26–50 of 133
Skip to search filters

Supercritical CO2-induced atomistic lubrication for water flow in a rough hydrophilic nanochannel

Nanoscale

Ho, Tuan A.; Wang, Yifeng; Ilgen, Anastasia G.; Criscenti, Louise C.; Tenney, Craig M.

A fluid flow in a nanochannel highly depends on the wettability of the channel surface to the fluid. The permeability of the nanochannel is usually very low, largely due to the adhesion of fluid at the solid interfaces. Using molecular dynamics (MD) simulations, we demonstrate that the flow of water in a nanochannel with rough hydrophilic surfaces can be significantly enhanced by the presence of a thin layer of supercritical carbon dioxide (scCO2) at the water-solid interfaces. The thin scCO2 layer acts like an atomistic lubricant that transforms a hydrophilic interface into a super-hydrophobic one and triggers a transition from a stick- to- a slip boundary condition for a nanoscale flow. This work provides an atomistic insight into multicomponent interactions in nanochannels and illustrates that such interactions can be manipulated, if needed, to increase the throughput and energy efficiency of nanofluidic systems.

More Details

Chemical Effects on Subcritical Fracture in Silica From Molecular Dynamics Simulations

Journal of Geophysical Research: Solid Earth

Rimsza, Jessica R.; Jones, Reese E.; Criscenti, Louise C.

Fracture toughness of silicates is reduced in aqueous environments due to water-silica interactions at the crack tip. To investigate this effect, classical molecular dynamics simulations using the bond-order-based reactive force field (ReaxFF) were used to simulate silica fracture. The chemical and mechanical aspects were separated by simulating fracture in (a) a vacuum with dynamic loading, (b) an aqueous environment with dynamic loading, and (c) an aqueous environment with static subcritical mechanical loading to track silica dissolution. The addition of water to silica fracture reduced the silica fracture toughness by ~25%, a trend consistent with experimentally reported results. Analysis of Si─O bonds in the process zone and calculations of dissipation energy associated with fracture indicated that water relaxes the entire process zone and not just the surface. Additionally, the crack tip sharpens during fracture in water and an increased number of microscopic propagation events occur. This results in earlier fracture in systems with increasing mechanical loading in aqueous conditions, despite the lack of significant silica dissolution. Therefore, the threshold for Si─O bond breakage has been lowered in the presence of water and the reduction in fracture toughness is due to structural and energetic changes in the silica, rather than specific dissolution events.

More Details

Chemical-Mechanical Modeling of Subcritical-to-Critical Fracture in Geomaterials

Criscenti, Louise C.; Rimsza, Jessica R.; Jones, Reese E.; Matteo, Edward N.; Payne, Clay P.

Predicting chemical-mechanical fracture initiation and propagation in materials is a critical problem, with broad relevance to a host of geoscience applications including subsurface storage and waste disposal, geothermal energy development, and oil and gas extraction. In this project, we have developed molecular simulation and coarse- graining techniques to obtain an atomistic-level understanding of the chemical- mechanical mechanisms that control subcritical crack propagation in materials under tension and impact the fracture toughness. We have applied these techniques to the fracture of fused quartz in vacuum, in distilled water, and in two salt solutions - 1M NaC1, 1M NaOH - that form relatively acidic and basic solutions respectively. We have also established the capability to conduct double-compression double-cleavage experiments in an environmental chamber to observe material fracture in aqueous solution. Both simulations and experiments indicate that fractures propagate fastest in NaC1 solutions, slower in distilled water, and even slower in air.

More Details

Concerted Metal Cation Desorption and Proton Transfer on Deprotonated Silica Surfaces

Journal of Physical Chemistry Letters

Leung, Kevin L.; Criscenti, Louise C.; Knight, Andrew W.; Ilgen, Anastasia G.; Ho, Tuan A.; Greathouse, Jeffery A.

The adsorption equilibrium constants of monovalent and divalent cations to material surfaces in aqueous media are central to many technological, natural, and geochemical processes. Cation adsorption-desorption is often proposed to occur in concert with proton transfer on hydroxyl-covered mineral surfaces, but to date this cooperative effect has been inferred indirectly. This work applies density functional theory-based molecular dynamics simulations of explicit liquid water/mineral interfaces to calculate metal ion desorption free energies. Monodentate adsorption of Na+, Mg2+, and Cu2+ on partially deprotonated silica surfaces are considered. Na+ is predicted to be unbound, while Cu2+ exhibits binding free energies to surface SiO- groups that are larger than those of Mg2+. The predicted trends agree with competitive adsorption measurements on fumed silica surfaces. As desorption proceeds, Cu2+ dissociates one of the H2O molecules in its first solvation shell, turning into Cu2+(OH-)(H2O)3, while Mg remains Mg2+(H2O)6. The protonation state of the SiO- group at the initial binding site does not vary monotonically with cation desorption.

More Details

An atomic-scale evaluation of the fracture toughness of silica glass

Journal of Physics Condensed Matter

Jones, Reese E.; Rimsza, Jessica R.; Criscenti, Louise C.

Using an atomistic technique consistent with continuum balance laws and drawing on classical fracture mechanics theory, we estimate the resistance to fracture propagation of amorphous silica. We discuss correspondence and deviations from classical linear elastic fracture mechanics theory including size dependence, rigid/floppy modes of deformation, and the effects of surface energy and stress.

More Details

Differential retention and release of CO2 and CH4 in kerogen nanopores: Implications for gas extraction and carbon sequestration

Fuel

Ho, Tuan A.; Wang, Yifeng; Xiong, Yongliang X.; Criscenti, Louise C.

Methane (CH4) and carbon dioxide (CO2), the two major components generated from kerogen maturation, are stored dominantly in nanometer-sized pores in shale matrix as (1) a compressed gas, (2) an adsorbed surface species and/or (3) a species dissolved in pore water (H2O). In addition, supercritical CO2 has been proposed as a fracturing fluid for simultaneous enhanced oil/gas recovery (EOR) and carbon sequestration. A mechanistic understanding of CH4-CO2-H2O interactions in shale nanopores is critical for designing effective operational processes. Using molecular simulations, we show that kerogen preferentially retains CO2 over CH4 and that the majority of CO2 either generated during kerogen maturation or injected in EOR will remain trapped in the kerogen matrix. The trapped CO2 may be released only if the reservoir pressure drops below the supercritical CO2 pressure. When water is present in the kerogen matrix, it may block CH4 release. However, the addition of CO2 may enhance CH4 release because CO2 can diffuse through water and exchange for adsorbed methane in the kerogen nanopores.

More Details

Interaction of NaOH solutions with silica surfaces

Journal of Colloid and Interface Science

Rimsza, Jessica R.; Jones, Reese E.; Criscenti, Louise C.

Hypothesis: Sodium adsorption on silica surfaces depends on the solution counter-ion. Here, we use NaOH solutions to investigate basic environments. Simulations: Sodium adsorption on hydroxylated silica surfaces from NaOH solutions were investigated through molecular dynamics with a dissociative force field, allowing for the development of secondary molecular species. Findings: Across the NaOH concentrations (0.01 M − 1.0 M), ∼50% of the Na+ ions were concentrated in the surface region, developing silica surface charges between − 0.01 C/m2 (0.01 M NaOH) and − 0.76 C/m2 (1.0 M NaOH) due to surface site deprotonation. Five inner-sphere adsorption complexes were identified, including monodentate, bidentate, and tridentate configurations and two additional structures, with Na+ ions coordinated by bridging oxygen and hydroxyl groups or water molecules. Coordination of Na+ ions by bridging oxygen atoms indicates partial or complete incorporation of Na+ ions into the silica surface. Residence time analysis identified that Na+ ions coordinated by bridging oxygen atoms stayed adsorbed onto the surface four times longer than the mono/bi/tridentate species, indicating formation of relatively stable and persistent Na+ ion adsorption structures. Such inner-sphere complexes form only at NaOH concentrations of > 0.5 M. Na+ adsorption and lifetimes have implications for the stability of silica surfaces.

More Details

Crack propagation in silica from reactive classical molecular dynamics simulations

Journal of the American Ceramic Society

Rimsza, Jessica R.; Jones, Reese E.; Criscenti, Louise C.

Mechanistic insight into the process of crack growth can be obtained through molecular dynamics (MD) simulations. In this investigation of fracture propagation, a slit crack was introduced into an atomistic amorphous silica model and mode I stress was applied through far-field loading until the crack propagates. Atomic displacements and forces and an Irving–Kirkwood method with a Lagrangian kernel estimator were used to calculate the J-integral of classical fracture mechanics around the crack tip. The resulting fracture toughness (KIC), 0.76 ± 0.16 MPa√m, agrees with experimental values. In addition, the stress fields and dissipation energies around the slit crack indicate the development of an inelastic region ~30Å in diameter. This is one of the first reports of KIC values obtained from up-scaled atomic-level energies and stresses through the J-integral. The application of the ReaxFF classical MD force field in this study provides the basis for future research into crack growth in multicomponent oxides in a variety of environmental conditions.

More Details
Results 26–50 of 133
Results 26–50 of 133