Publications

Results 26–32 of 32
Skip to search filters

Spectral Clustering for Customer Phase Identification Using AMI Voltage Timeseries

2019 IEEE Power and Energy Conference at Illinois, PECI 2019

Blakely, Logan; Reno, Matthew J.; Feng, Wu C.

Smart grid technologies and wide-spread installation of advanced metering infrastructure (AMI) equipment present new opportunities for the use of machine learning algorithms paired with big data to improve distribution system models. Accurate models are critical in the continuing integration of distributed energy resources (DER) into the power grid, however the low-voltage models often contain significant errors. This paper proposes a novel spectral clustering approach for validating and correcting customer electrical phase labels in existing utility models using the voltage timeseries produced by AMI equipment. Spectral clustering is used in conjunction with a sliding window ensemble to improve the accuracy and scalability of the algorithm for large datasets. The proposed algorithm is tested using real data to validate or correct over 99% of customer phase labels within the primary feeder under consideration. This is over a 94% reduction in error given the 9% of customers predicted to have incorrect phase labels.

More Details

Decision tree ensemble machine learning for rapid QSTS simulations

2018 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2018

Blakely, Logan; Reno, Matthew J.; Broderick, Robert J.

High-resolution, quasi-static time series (QSTS) simulations are essential for modeling modern distribution systems with high-penetration of distributed energy resources (DER) in order to accurately simulate the time-dependent aspects of the system. Presently, QSTS simulations are too computationally intensive for widespread industry adoption. This paper proposes to simulate a portion of the year with QSTS and to use decision tree machine learning methods, random forests and boosting ensembles, to predict the voltage regulator tap changes for the remainder of the year, accurately reproducing the results of the time-consuming, brute-force, yearlong QSTS simulation. This research uses decision tree ensemble machine learning, applied for the first time to QSTS simulations, to produce high-accuracy QSTS results, up to 4x times faster than traditional methods.

More Details
Results 26–32 of 32
Results 26–32 of 32