Publications

39 Results
Skip to search filters

Facile microwave synthesis of zirconium metal-organic framework thin films on gold and silicon and application to sensor functionalization

Microporous and Mesoporous Materials

Appelhans, Leah A.; Hughes, Lindsey G.; McKenzie, Bonnie; Rodriguez, Mark A.; Griego, J.J.M.; Briscoe, Jayson B.; Moorman, Matthew W.; Frederick, Esther F.; Wright, Jeremy B.

Zirconium-based metal-organic frameworks, including UiO-66 and related frameworks, have become the focus of considerable research in the area of chemical warfare agent (CWA) decontamination. However, little work has been reported exploring these metal-organic frameworks (MOFs) for CWA sensing applications. For many sensing approaches, the growth of high-quality thin films of the active material is required, and thin film growth methods must be compatible with complex device architectures. Several approaches to synthesize thin films of UiO-66 have been described but many of these existing methods are complex or time consuming. We describe the development of a simple and rapid microwave assisted synthesis of oriented UiO-66 thin films on unmodified silicon (Si) and gold (Au) substrates. Thin films of UiO-66 and UiO-66-NH2 can be grown in as little as 2 min on gold substrates and 30 min on Si substrates. The film morphology and orientation are characterized and the effects of reaction time and temperature on thin film growth on Au are investigated. Both reaction time and temperature impact the overgrowth of protruding discrete crystallites in the thin film layer but, surprisingly, no strong correlation is observed between film thickness and reaction time or temperature. We also briefly describe the synthesis of Zr/Ce solid solution thin films of UiO-66 on Au and report the first synthesis of a solid solution thin film MOF. Finally, we demonstrate the utility of the microwave method for the facile functionalization of two sensor architectures, plasmonic nanohole arrays and microresonators, with UiO-66 thin films.

More Details

Depolymerization of Cross-Linked Polybutadiene Networks in Situ Using Latent Alkene Metathesis

ACS Applied Polymer Materials

Herman, Jeremy A.; Seazzu, Micaela E.; Hughes, Lindsey G.; Wheeler, David R.; Washburn, Cody M.; Jones, Brad H.

We report a novel approach whereby cross-linked polybutadiene (PB) networks can be depolymerized in situ based on thermally activated alkene metathesis. A commercially available latent Ru catalyst, HeatMet, was compared to the common second-generation Hoveyda-Grubbs catalyst, HG2, in the metathetic depolymerization of PB. HeatMet was found to possess exceptional stability and negligible activity toward PB under ambient conditions, in solution and in bulk. This enabled cross-linked networks to be prepared containing homogeneously distributed Ru catalyst. The dynamic mechanical properties of networks containing HeatMet and cross-linked using alcohol-isocyanate or thiol-ene chemistry were evaluated during cross-linking and post-cross-linking under isothermal and nonisothermal heating. In both cases, above minimum catalyst loadings ranging from 0.004 to 0.024 mol %, the networks exhibited rapid degelation into a soluble oil upon heating to 100 °C. At these temperatures, extensive depolymerization of the PB segments through ring-closing metathesis of 1,4/1,2 diads by the activated HeatMet introduced network defects in significantly greater proportion than the original number of cross-links. The in situ depolymerization of cross-linked PB networks through latent catalysis, as described here, may enable facile disposal and recycling of PB encapsulants and adhesives, among other applications.

More Details

Self Assembly–Assisted Additive Manufacturing: Direct Ink Write 3D Printing of Epoxy–Amine Thermosets

Macromolecular Materials and Engineering

Manning, Kylie M.; Wyatt, Nicholas B.; Hughes, Lindsey G.; Cook, Adam W.; Giron, Nicholas H.; Martinez, Estevan J.; Campbell, Christopher C.; Celina, Mathias C.

The use of self-assembling, pre-polymer materials in 3D printing is rare, due to difficulties of facilitating printing with low molecular weight species and preserving their reactivity and/or functions on the macroscale. Akin to 3D printing of small molecules, examples of extrusion-based printing of pre-polymer thermosets are uncommon, arising from their limited rheological tuneability and slow reactions kinetics. The direct ink write (DIW) 3D printing of a two-part resin, Epon 828 and Jeffamine D230, using a self-assembly approach is reported. Through the addition of self-assembling, ureidopyrimidinone-modified Jeffamine D230 and nanoclay filler, suitable viscoelastic properties are obtained, enabling 3D printing of the epoxy–amine pre-polymer resin. A significant increase in viscosity is observed, with an infinite shear rate viscosity of approximately two orders of magnitude higher than control resins, in addition to, an increase in yield strength and thixotropic behavior. Printing of simple geometries is demonstrated with parts showing excellent interlayer adhesion, unachievable using control resins.

More Details

A Process and Environment Aware Sierra/SolidMechanics Cohesive Zone Modeling Capability for Polymer/Solid Interfaces

Reedy, Earl D.; Hughes, Lindsey G.; Kropka, Jamie M.; Stavig, Mark E.; Stevens, Mark J.; Chambers, Robert S.

The performance and reliability of many mechanical and electrical components depend on the integrity of po lymer - to - solid interfaces . Such interfaces are found in adhesively bonded joints, encapsulated or underfilled electronic modules, protective coatings, and laminates. The work described herein was aimed at improving Sandia's finite element - based capability to predict interfacial crack growth by 1) using a high fidelity nonlinear viscoelastic material model for the adhesive in fracture simulations, and 2) developing and implementing a novel cohesive zone fracture model that generates a mode - mixity dependent toughness as a natural consequence of its formulation (i.e., generates the observed increase in interfacial toughness wi th increasing crack - tip interfacial shear). Furthermore, molecular dynamics simulations were used to study fundamental material/interfa cial physics so as to develop a fuller understanding of the connection between molecular structure and failure . Also reported are test results that quantify how joint strength and interfacial toughness vary with temperature.

More Details

Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

AIChE Journal

Roberts, Christine C.; Brooks, Carlton F.; Hughes, Lindsey G.; Wyatt, Nicholas B.; Rao, Rekha R.; Nemer, Martin N.

A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively in both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.

More Details

New composite separator pellet to increase power density and reduce size of thermal batteries

Mondy, L.A.; Evans, Lindsey E.; Roberts, Christine C.; Grillet, Anne M.; Soehnel, Melissa M.; Barringer, David A.; DiAntonio, Christopher D.; Chavez, Tom C.; Ingersoll, David I.; Hughes, Lindsey G.

We show that it is possible to manufacture strong macroporous ceramic films that can be backfilled with electrolyte to form rigid separator pellets suitable for use in thermal batteries. Several new ceramic manufacturing processes are developed to produce sintered magnesium oxide foams with connected porosities of over 80% by volume and with sufficient strength to withstand the battery manufacturing steps. The effects of processing parameters are quantified, and methods to imbibe electrolyte into the ceramic scaffold demonstrated. Preliminary single cell battery testing show that some of our first generation pellets exhibit longer voltage life with comparable resistance at the critical early times to that exhibited by a traditional pressed pellets. Although more development work is needed to optimize the processes to create these rigid separator pellets, the results indicate the potential of such ceramic separator pellets to be equal, if not superior to, current pressed pellets. Furthermore, they could be a replacement for critical material that is no longer available, as well as improving battery separator strength, decreasing production costs, and leading to shorter battery stacks for long-life batteries.

More Details

Size and structure of Chlorella zofingiensis /FeCl 3 flocs in a shear flow: Algae Floc Structure

Biotechnology and Bioengineering

Wyatt, Nicholas B.; O'Hern, Timothy J.; Shelden, Bion S.; Hughes, Lindsey G.; Mondy, L.A.

Flocculation is a promising method to overcome the economic hurdle to separation of algae from its growth medium in large scale operations. But, understanding of the floc structure and the effects of shear on the floc structure are crucial to the large scale implementation of this technique. The floc structure is important because it determines, in large part, the density and settling behavior of the algae. Freshwater algae floc size distributions and fractal dimensions are presented as a function of applied shear rate in a Couette cell using ferric chloride as a flocculant. Comparisons are made with measurements made for a polystyrene microparticle model system taken here as well as reported literature results. The algae floc size distributions are found to be self-preserving with respect to shear rate, consistent with literature data for polystyrene. Moreover, three fractal dimensions are calculated which quantitatively characterize the complexity of the floc structure. Low shear rates result in large, relatively dense packed flocs which elongate and fracture as the shear rate is increased. Our results presented here provide crucial information for economically implementing flocculation as a large scale algae harvesting strategy.

More Details

First-principles flocculation as the key to low energy algal biofuels processing

Hewson, John C.; Mondy, L.A.; Murton, Jaclyn K.; O'Hern, Timothy J.; Parchert, Kylea J.; Pohl, Phillip I.; Williams, Cecelia V.; Wyatt, Nicholas B.; Barringer, David A.; Pierce, Flint P.; Brady, Patrick V.; Dwyer, Brian P.; Grillet, Anne M.; Hankins, M.G.; Hughes, Lindsey G.; Lechman, Jeremy B.

This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs.

More Details

Creation and characterization of magnesium oxide macroporous ceramics

Materials Engineering and Sciences Division - Core Programming Topic at the 2011 AIChE Annual Meeting

Mondy, L.A.; DiAntonio, Christopher D.; Chavez, Tom C.; Hughes, Lindsey G.; Grillet, Anne M.; Roberts, Christine C.; Ingersoll, David I.

We examine several methods to create a sheet of magnesium oxide (MgO) macroporous ceramic material via tape casting. These methods include the approach pioneered by Akartuna et al.1 in which an oil/water emulsion is stabilized by surface-modified metal oxide particles at the droplet interfaces. Upon drying, a scaffold of the self-assembled particles is strong enough to be removed from the substrate material and sintered. We find that this method can be used with MgO particles surface modified by short amphiphilic molecules. This approach is compared with two more traditional methods to induce structure into a green ceramic: 1) creation of an MgO ceramic slip with added pore formers, and 2) sponge impregnation of a reticulated foam with the MgO slip. Green and sintered samples made using each method are hardness tested and results compared for several densities of the final ceramics. Optical and SEM images of the materials are shown.

More Details
39 Results
39 Results