Publications

Results 1–50 of 93
Skip to search filters

Effects of Convection On Experimental Investigation Of Heat Generation During Plastic Deformation

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Hodges, Wyatt L.; Phinney, Leslie M.; Lester, Brian T.; Talamini, Brandon T.; Jones, Amanda

In order to predict material failure accurately, it is critical to have knowledge of deformation physics. Uniquely challenging is determination of the conversion coefficient of plastic work into thermal energy. Here, we examine the heat transfer problem associated with the experimental determination of β in copper and stainless steel. A numerical model of the tensile test sample is used to estimate temperature rises across the mechanical test sample at a variety of convection coefficients, as well as to estimate heat losses to the chamber by conduction and convection. This analysis is performed for stainless steel and copper at multiple environmental conditions. These results are used to examine the relative importance of convection and conduction as heat transfer pathways. The model is additionally used to perform sensitivity analysis on the parameters that will ultimately determine b. These results underscore the importance of accurate determination of convection coefficients and will be used to inform future design of samples and experiments. Finally, an estimation of convection coefficient for an example mechanical test chamber is detailed as a point of reference for the modeling results.

More Details

Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

Roberts, Christine C.; Graham, Alan G.; Nemer, Martin N.; Phinney, Leslie M.; Garcia, Robert M.; Soehnel, Melissa M.; Stirrup, Emily K.

Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

More Details

Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials

Lechman, Jeremy B.; Battaile, Corbett C.; Bolintineanu, Dan S.; Cooper, Marcia A.; Erikson, William W.; Foiles, Stephen M.; Kay, Jeffrey J.; Phinney, Leslie M.; Piekos, Edward S.; Specht, Paul E.; Wixom, Ryan R.; Yarrington, Cole Y.

This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In both cases much more remains to be accomplished.

More Details

Addressing Modeling Requirements for Radiation Heat Transfer

Tencer, John T.; Akau, Ronald L.; Dobranich, Dean D.; Brown, Alexander B.; Dodd, Amanda B.; Hogan, Roy E.; Okusanya, Tolulope O.; Phinney, Leslie M.; Pierce, Flint P.

Thermal analysts address a wide variety of applications requiring the simulation of radiation heat transfer phenomena. The re are gaps in the currently available modeling capabilities. Addressing these gaps w ould allow for the consideration of additional physics and increase confidence in simulation predictions. This document outlines a five year plan to address the current and future needs of the analyst community with regards to modeling radiation heat tran sfer processes. This plan represents a significant multi - year effort that must be supported on an ongoing basis.

More Details

Raman thermometry and thermal modeling of highly doped silicon-on-insulator joule heated mems bridges under varying gas pressures

ASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012

Serrano, Justin R.; Piekos, Edward S.; Phinney, Leslie M.

This paper reports on experimental and numerical investigations of electrically powered MEMS structures operated under different gas pressure and electrical power conditions. The structures studied are boron-doped single crystal silicon-on-insulator (SOI) microbridges that are heated by an electrical current. The microbridges are 85 μm wide, 125 μm tall and 5.5 mm long and lie 2 μm above the substrate. The impact of the narrow gap in the gas phase thermal transport is evaluated by operating the devices under various nitrogen gas pressure conditions, ranging from 625 Torr to ∼1 mTorr - spanning the continuum to noncontinuum gas heat transfer regimes. Raman thermometry is used to obtain spatially-resolved temperature measurements along the length of the device under the various operating conditions. The large dopant concentration (∼4 × 1019 cm-3) within the active silicon layer is found to affect the Raman spectrum used for thermometry via Fano-type interactions, resulting in an asymmetric Raman line shape. With large Raman peak asymmetries, use of the Raman line width as the temperature metric is less reliable as it shows decreased sensitivity to temperature. However, the asymmetry itself, when considered as a fitting parameter, was found to be a reliable indicator of sample temperature. The measured device temperatures are compared to finite element simulations of the structures. Noncontinuum gas phase heat transfer effects are incorporated into the continuum simulations via temperature discontinuities at the solid-gas interface, provided by a model developed from noncontinuum simulation results. Additionally, the impact of the large dopant concentrations is incorporated into the thermal models via a modified thermal conductivity model which considers impurity scattering effects on thermal transport. The simulation and experimental results show reasonable agreement. Copyright © 2012 by ASME.

More Details

Phonon considerations in the reduction of thermal conductivity in phononic crystals

Applied Physics A: Materials Science and Processing

Hopkins, Patrick E.; Phinney, Leslie M.; Rakich, Peter T.; Olsson, Roy H.; El-Kady, I.

Periodic porous structures offer unique material solutions to thermoelectric applications. With recent interest in phonon band gap engineering, these periodic structures can result in reduction of the phonon thermal conductivity due to coherent destruction of phonon modes characteristic in phononic crystals. In this paper, we numerically study phonon transport in periodic porous silicon phononic crystal structures. We develop a model for the thermal conductivity of phononic crystal that accounts for both coherent and incoherent phonon effects, and show that the phonon thermal conductivity is reduced to less than 4% of the bulk value for Si at room temperature. This has substantial impact on thermoelectric applications, where the efficiency of thermoelectric materials is inversely proportional to the thermal conductivity. © 2010 Springer-Verlag.

More Details

Raman and infrared thermometry for microsystems

Phinney, Leslie M.; Lu, Wei-Yang L.; Serrano, Justin R.

This paper compares measurements made by Raman and infrared thermometry on a SOI (silicon on insulator) bent-beam thermal microactuator. Both techniques are noncontact and used to experimentally measure temperatures along the legs and on the shuttle of the thermal microactuators. Raman thermometry offers micron spatial resolution and measurement uncertainties of {+-}10 K; however, typical data collection times are a minute per location leading to measurement times on the order of hours for a complete temperature profile. Infrared thermometry obtains a full-field measurement so the data collection time is much shorter; however, the spatial resolution is lower and calibrating the system for quantitative measurements is challenging. By obtaining thermal profiles on the same SOI thermal microactuator, the relative strengths and weaknesses of the two techniques are assessed.

More Details

Raman and infrared thermometry for microsystems

Phinney, Leslie M.; Lu, Wei-Yang L.; Serrano, Justin R.

This paper compares measurements made by Raman and infrared thermometry on a SOI (silicon on insulator) bent-beam thermal microactuator. Both techniques are noncontact and used to experimentally measure temperatures along the legs and on the shuttle of the thermal microactuators. Raman thermometry offers micron spatial resolution and measurement uncertainties of {+-}10 K; however, typical data collection times are a minute per location leading to measurement times on the order of hours for a complete temperature profile. Infrared thermometry obtains a full-field measurement so the data collection time is much shorter; however, the spatial resolution is lower and calibrating the system for quantitative measurements is challenging. By obtaining thermal profiles on the same SOI thermal microactuator, the relative strengths and weaknesses of the two techniques are assessed.

More Details

Comparison of thermal conductivity and thermal boundary conductance sensitivities in continuous-wave and ultrashort-pulsed thermoreflectance analyses

International Journal of Thermophysics

Hopkins, Patrick E.; Serrano, Justin R.; Phinney, Leslie M.

Thermoreflectance techniques are powerful tools for measuring thermophysical properties of thin film systems, such as thermal conductivity, Λ, of individual layers, or thermal boundary conductance across thin film interfaces (G). Thermoreflectance pump-probe experiments monitor the thermoreflectance change on the surface of a sample, which is related to the thermal properties in the sample of interest. Thermoreflectance setups have been designed with both continuous wave (cw) and pulsed laser systems. In cw systems, the phase of the heating event is monitored, and its response to the heating modulation frequency is related to the thermophysical properties; this technique is commonly termed a phase sensitive thermoreflectance (PSTR) technique. In pulsed laser systems, pump and probe pulses are temporally delayed relative to each other, and the decay in the thermoreflectance signal in response to the heating event is related to the thermophysical properties; this technique is commonly termed a transient thermoreflectance (TTR) technique. In this work, mathematical models are presented to be used with PSTR and TTR techniques to determine the Λ and G of thin films on substrate structures. The sensitivities of the models to various thermal and sample parameters are discussed, and the advantages and disadvantages of each technique are elucidated from the results of the model analyses. © 2010 Springer Science+Business Media, LLC.

More Details

Measured and predicted temperature profiles along MEMS bridges at pressures from 0.05 to 625 torr

Phinney, Leslie M.; Serrano, Justin R.; Piekos, Edward S.; Torczynski, J.R.; Gallis, Michail A.; Gorby, Allen D.

We will present experimental and computational investigations of the thermal performance of microelectromechanical systems (MEMS) as a function of the surrounding gas pressure. Lowering the pressure in MEMS packages reduces gas damping, providing increased sensitivity for certain MEMS sensors; however, such packaging also dramatically affects their thermal performance since energy transfer to the environment is substantially reduced. High-spatial-resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 microns wide, 2.25 microns thick, 12 microns above the substrate, and either 200 or 400 microns long in nitrogen atmospheres with pressures ranging from 0.05 to 625 Torr. Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared to the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The experimental and simulation results indicate that at pressures below 0.5 Torr the gas-phase heat transfer is negligible compared to heat conduction through the thermal actuator legs. As the pressure increases above 0.5 Torr, the gas-phase heat transfer becomes more significant. At ambient pressures, gas-phase heat transfer drastically impacts the thermal performance. The measured and simulated temperature profiles are in qualitative agreement in the present study. Quantitative agreement between experimental and simulated temperature profiles requires accurate knowledge of temperature-dependent thermophysical properties, the device geometry, and the thermal accommodation coefficient.

More Details

Raman thermometry measurements and thermal simulations for mems bridges at pressures from 0.05 to 625 TORR

Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009

Phinney, Leslie M.; Serrano, Justin R.; Piekos, Edward S.; Torczynski, J.R.; Gallis, Michail A.; Gorby, Allen D.

This paper reports on experimental and computational investigations into the thermal performance of microelectromechanical systems (MEMS) as a function of the pressure of the surrounding gas. High spatial resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 μm wide, 2.25 μm thick, and either 200 or 400 μm long in nitrogen atmospheres with pressures ranging from 0.05 to 625 Torr. Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared to the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The results indicate that gas-phase heat transfer is significant for devices of this size at ambient pressures but becomes minimal as the pressure is reduced below 5 Torr. The model and experimental results are in qualitative agreement, and better quantitative agreement requires increased accuracy in the geometrical and material property values. Copyright © 2009 by ASME.

More Details
Results 1–50 of 93
Results 1–50 of 93