Publications

16 Results
Skip to search filters

Advanced fuel chemistry for advanced engines

Taatjes, Craig A.; Miller, James A.; Fernandes, Ravi X.; Zador, Judit Z.; Jusinski, Leonard E.

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

More Details

Formally direct pathways and low-temperature chain branching in hydrocarbon autoignition : the cyclohexyl + O2 reaction at high pressure

Proposed for publication in Journal of the American Chemical Society.

Taatjes, Craig A.; Miller, James A.; Jusinski, Leonard E.; Fernandes, Ravi X.; Zador, Judit Z.

The OH concentration in the Cl-initiated oxidation of cyclohexane has been measured between 6.5-20.3 bar and in the 586-828 K temperature range by a pulsed-laser photolytic initiation--laser-induced fluorescence method. The experimental OH profiles are modeled by using a master-equation-based kinetic model as well as a comprehensive literature mechanism. Below 700 K OH formation takes place on two distinct time-scales, one on the order of microseconds and the other over milliseconds. Detailed modeling demonstrates that formally direct chemical activation pathways are responsible for the OH formation on short timescales. These results establish that formally direct pathways are surprisingly important even for relatively large molecules at the pressures of practical combustors. It is also shown that remaining discrepancies between model and experiment are attributable to low-temperature chain branching from the addition of the second oxygen to hydroperoxycyclohexyl radicals.

More Details

Temperature-dependent kinetics of the vinyl radical (C2H3) self-reaction

Proposed for publication in the Journal of Physical Chemistry A.

Taatjes, Craig A.; Zador, Judit Z.; Osborn, David L.; Selby, Talitha S.; Jusinski, Leonard E.

The rate coefficient for the self-reaction of vinyl radicals has been measured by two independent methods. The rate constant as a function of temperature at 20 Torr has been determined by a laser-photolysis/laser absorption technique. Vinyl iodide is photolyzed at 266 nm, and both the vinyl radical and the iodine atom photolysis products are monitored by laser absorption. The vinyl radical concentration is derived from the initial iodine atom concentration, which is determined by using the known absorption cross section of the iodine atomic transition to relate the observed absorption to concentration. The measured rate constant for the self-reaction at room temperature is approximately a factor of 2 lower than literature recommendations. The reaction displays a slightly negative temperature dependence, which can be represented by a negative activation energy, (E{sub a}/R) = -400 K. The laser absorption results are supported by independent experiments at 298 K and 4 Torr using time-resolved synchrotron-photoionization mass-spectrometric detection of the products of divinyl ketone and methyl vinyl ketone photolysis. The photoionization mass spectrometry experiments additionally show that methyl + propargyl are formed in the vinyl radical self-reaction, with an estimated branching fraction of 0.5 at 298 K and 4 Torr.

More Details

Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2

Physical Chemistry Chemical Physics

Knepp, Adam M.; Meloni, Giovanni M.; Jusinski, Leonard E.; Taatjes, Craig A.; Cavallotti, Carlo; Klippenstein, Stephen J.

The production of OH and HO2 in Cl-initiated oxidation of cyclohexane has been measured using pulsed-laser photolytic initiation and continuous-laser absorption detection. The experimental data are modeled by master equation calculations that employ new G2(MP2)-like ab initio characterizations of important stationary points on the cyclo-C 6H11O2 surface. These ab initio calculations are a substantial expansion on previously published characterizations, including explicit consideration of conformational changes (chair-boat, axial-equatorial) and torsional potentials. The rate constants for the decomposition and ring-opening of cyclohexyl radical are also computed with ab initio based transition state theory calculations. Comparison of kinetic simulations based on the master equation results with the present experimental data and with literature determinations of branching fractions suggests adjustment of several transition state energies below their ab initio values. Simulations with the adjusted values agree well with the body of experimental data. The results once again emphasize the importance of both direct and indirect components of the kinetics for the production of both HO2 and OH in radical + O 2 reactions. © the Owner Societies.

More Details

Pressure and temperature dependence of the reaction of vinyl radical with ethylene

Journal of Physical Chemistry A

Ismail, Huzeifa; Franklin Goldsmith, C.; Abel, Paul R.; Howe, Pui T.; Fahr, Askar; Halpern, Joshua B.; Jusinski, Leonard E.; Georgievskii, Yuri; Taatjes, Craig A.; Green, William H.

This work reports measurements of absolute rate coefficients and Rice-Ramsperger-Kassel-Marcus (RRKM) master equation simulations of the C 2H 3 + C 2H 4 reaction. Direct kinetic studies were performed over a temperature range of 300-700 K and pressures of 20 and 133 mbar. Vinyl radicals (H 2C=CH) were generated by laser photolysis of vinyl iodide (C 2H 3I) at 266 nm, and time-resolved absorption spectroscopy was used to probe vinyl radicals through absorption at 423.2 nm. Measurements at 20 mbar are in good agreement with previous determinations at higher temperature. A weighted three-parameter Arrhenius fit to the experimental rate constant at 133 mbar, with the temperature exponent fixed, gives k = (7 ±1) × 10 -14 cm 3 molecule -1 s -1 (T/298 K) 2 exp[-(1430 ± 70) K/T]. RRKM master equation simulations, based on G3 calculations of stationary points on the C 4H 7 potential energy surface, were carried out to predict rate coefficients and product branching fractions. The predicted branching to 1-methylallyl product is relatively small under the conditions of the present experiments but increases as the pressure is lowered. Analysis of end products of 248 nm photolysis of vinyl iodide/ethylene mixtures at total pressures between 27 and 933 mbar provides no direct evidence for participation of 1-methylallyl. © 2007 American Chemical Society.

More Details

Temperature dependence and deuterium kinetic isotope effects in the HCO + NO reaction

Proposed for publication in the Journal of Photochemistry and Photobiology A : Chemistry.

Jusinski, Leonard E.

The reactions of HCO and DCO with NO have been measured by the laser photolysis/continuous-wave (CW) laser-induced fluorescence (LIF) method from 296 to 623 K, probing the ({tilde B}{sup 2}A{prime} {l_arrow} {tilde X}{sup 2}A{prime}) HCO (DCO) system. The HCO + NO rate coefficient is (1.81 {+-} 0.10) x 10{sup -11} cm{sup 3} molecule{sup -1} s{sup -1} and the DCO + NO rate coefficient is (1.61 {+-} 0.12) x 10{sup -11} cm{sup 3} molecule{sup -1} s{sup -1} at 296 K. Both rate coefficients decrease with increasing temperature between 296 and 623 K. The kinetic isotope effect is k{sub H}/k{sub D} = 1.12 {+-} 0.09 at 296 K and increases to 1.25 {+-} 0.15 at 623 K. The normal kinetic isotope effect supports abstraction as the principal mechanism for the reaction, in agreement with recent computational results.

More Details
16 Results
16 Results