Publications

Results 1–25 of 39
Skip to search filters

A causal perspective on reliability assessment

Reliability Engineering and System Safety

Hund, Lauren H.; Schroeder, Benjamin B.

Causality in an engineered system pertains to how a system output changes due to a controlled change or intervention on the system or system environment. Engineered systems designs reflect a causal theory regarding how a system will work, and predicting the reliability of such systems typically requires knowledge of this underlying causal structure. The aim of this work is to introduce causal modeling tools that inform reliability predictions based on biased data sources. We present a novel application of the popular structural causal modeling (SCM) framework to reliability estimation in an engineering application, illustrating how this framework can inform whether reliability is estimable and how to estimate reliability given a set of data and assumptions about the subject matter and data generating mechanism. When data are insufficient for estimation, sensitivity studies based on problem-specific knowledge can inform how much reliability estimates can change due to biases in the data and what information should be collected next to provide the most additional information. We apply the approach to a pedagogical example related to a real, but proprietary, engineering application, considering how two types of biases in data can influence a reliability calculation.

More Details

The need for credibility guidance for analyses quantifying margin and uncertainty

Conference Proceedings of the Society for Experimental Mechanics Series

Schroeder, Benjamin B.; Hund, Lauren H.; Kittinger, Robert

Current quantification of margin and uncertainty (QMU) guidance lacks a consistent framework for communicating the credibility of analysis results. Recent efforts at providing QMU guidance have pushed for broadening the analyses supporting QMU results beyond extrapolative statistical models to include a more holistic picture of risk, including information garnered from both experimental campaigns and computational simulations. Credibility guidance would assist in the consideration of belief-based aspects of an analysis. Such guidance exists for presenting computational simulation-based analyses and is under development for the integration of experimental data into computational simulations (calibration or validation), but is absent for the ultimate QMU product resulting from experimental or computational analyses. A QMU credibility assessment framework comprised of five elements is proposed: requirement definitions and quantity of interest selection, data quality, model uncertainty, calibration/parameter estimation, and validation. Through considering and reporting on these elements during a QMU analysis, the decision-maker will receive a more complete description of the analysis and be better positioned to understand the risks involved with using the analysis to support a decision. A molten salt battery application is used to demonstrate the proposed QMU credibility framework.

More Details

Robust approaches to quantification of margin and uncertainty for sparse data

Hund, Lauren H.; Schroeder, Benjamin B.; Rumsey, Kelin R.; Murchison, Nicole M.

Characterizing the tails of probability distributions plays a key role in quantification of margins and uncertainties (QMU), where the goal is characterization of low probability, high consequence events based on continuous measures of performance. When data are collected using physical experimentation, probability distributions are typically fit using statistical methods based on the collected data, and these parametric distributional assumptions are often used to extrapolate about the extreme tail behavior of the underlying probability distribution. In this project, we character- ize the risk associated with such tail extrapolation. Specifically, we conducted a scaling study to demonstrate the large magnitude of the risk; then, we developed new methods for communicat- ing risk associated with tail extrapolation from unvalidated statistical models; lastly, we proposed a Bayesian data-integration framework to mitigate tail extrapolation risk through integrating ad- ditional information. We conclude that decision-making using QMU is a complex process that cannot be achieved using statistical analyses alone.

More Details
Results 1–25 of 39
Results 1–25 of 39