Publications

Results 301–335 of 335
Skip to search filters

Error estimation approaches for progressive response surfaces -more results

Conference Proceedings of the Society for Experimental Mechanics Series

Romero, Vicente J.; Slepoy, R.; Swiler, Laura P.; Giunta, A.A.; Krishnamurthy, T.

Response surface functions are often used as simple and inexpensive replacements for computationally expensive computer models that simulate the behavior of a complex system over some parameter space. "Progressive" response surfaces are built up incrementally as global information is added from new sample points added to the previous points in the parameter space. As the response surfaces are globally upgraded, indicators of the convergence of the response surface approximation to the exact (fitted) function can be inferred. Sampling points can be incrementally added in a structured or unstructured fashion. Whatever the approach, it is usually desirable to sample the entire parameter space uniformly (at least in early stages of sampling). At later stages of sampling, depending on the nature of the quantity being resolved, it may be desirable to continue sampling uniformly (progressive response surfaces), or to switch to a focusing/economizing strategy of preferentially sampling certain regions of the parameter space based on information gained in previous stages of sampling ("adaptive" response surfaces). Here we consider progressive response surfaces where a balanced representation of global response over the parameter space is desired. We use Kriging and Moving-Least-Squares methods to fit Halton quasi-Monte-Carlo data samples and interpolate over the parameter space. On 2-D test problems we use the response surfaces to compute various response measures and assess the accuracy/applicability of heuristic error estimates based on convergence behavior of the computed response quantities. Where applicable we apply Richardson Extrapolation for estimates of error, and assess the accuracy of these estimates. We seek to develop a robust methodology for constructing progressive response surface approximations with reliable error estimates.

More Details

Penetrator reliability investigation and design exploration : from conventional design processes to innovative uncertainty-capturing algorithms

Swiler, Laura P.; Hough, Patricia D.; Gray, Genetha A.; Chiesa, Michael L.; Heaphy, Robert T.; Thomas, Stephen W.; Trucano, Timothy G.

This project focused on research and algorithmic development in optimization under uncertainty (OUU) problems driven by earth penetrator (EP) designs. While taking into account uncertainty, we addressed three challenges in current simulation-based engineering design and analysis processes. The first challenge required leveraging small local samples, already constructed by optimization algorithms, to build effective surrogate models. We used Gaussian Process (GP) models to construct these surrogates. We developed two OUU algorithms using 'local' GPs (OUU-LGP) and one OUU algorithm using 'global' GPs (OUU-GGP) that appear competitive or better than current methods. The second challenge was to develop a methodical design process based on multi-resolution, multi-fidelity models. We developed a Multi-Fidelity Bayesian Auto-regressive process (MF-BAP). The third challenge involved the development of tools that are computational feasible and accessible. We created MATLAB{reg_sign} and initial DAKOTA implementations of our algorithms.

More Details

Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 developers manual

Brown, Shannon L.; Griffin, Joshua G.; Hough, Patricia D.; Kolda, Tamara G.; Martinez-Canales, Monica L.; Williams, Pamela J.; Adams, Brian M.; Dunlavy, Daniel D.; Swiler, Laura P.; Giunta, Anthony A.; Hart, William E.; Watson, Jean-Paul W.; Eddy, John P.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

More Details

DAKOTA, a multilevel parellel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 uers's manual

Swiler, Laura P.; Giunta, Anthony A.; Hart, William E.; Watson, Jean-Paul W.; Eddy, John P.; Griffin, Joshua G.; Hough, Patricia D.; Kolda, Tamara G.; Martinez-Canales, Monica L.; Williams, Pamela J.; Eldred, Michael S.; Brown, Shannon L.; Adams, Brian M.; Dunlavy, Daniel D.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 reference manual

Brown, Shannon L.; Griffin, Joshua G.; Hough, Patricia D.; Kolda, Tamara G.; Martinez-Canales, Monica L.; Williams, Pamela J.; Adams, Brian M.; Dunlavy, Daniel D.; Swiler, Laura P.; Giunta, Anthony A.; Hart, William E.; Watson, Jean-Paul W.; Eddy, John P.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

More Details

Verification of LHS distributions

Swiler, Laura P.

This document provides verification test results for normal, lognormal, and uniform distributions that are used in Sandia's Latin Hypercube Sampling (LHS) software. The purpose of this testing is to verify that the sample values being generated in LHS are distributed according to the desired distribution types. The testing of distribution correctness is done by examining summary statistics, graphical comparisons using quantile-quantile plots, and format statistical tests such as the Chisquare test, the Kolmogorov-Smirnov test, and the Anderson-Darling test. The overall results from the testing indicate that the generation of normal, lognormal, and uniform distributions in LHS is acceptable.

More Details

The surfpack software library for surrogate modeling of sparse irregularly spaced multidimensional data

Collection of Technical Papers - 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference

Giunta, Anthony A.; Swiler, Laura P.; Brown, Shannon L.; Eldred, Michael S.; Richards, Mark D.; Cyr, Eric C.

Surfpack is a general-purpose software library of multidimensional function approximation methods for applications such as data visualization, data mining, sensitivity analysis, uncertainty quantification, and numerical optimization. Surfpack is primarily intended for use on sparse, irregularly-spaced, n-dimensional data sets where classical function approximation methods are not applicable. Surfpack is under development at Sandia National Laboratories, with a public release of Surfpack version 1.0 in August 2006. This paper provides an overview of Surfpack's function approximation methods along with some of its software design attributes. In addition, this paper provides some simple examples to illustrate the utility of Surfpack for data trend analysis, data visualization, and optimization. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Perspectives on optimization under uncertainty: Algorithms and applications

Giunta, Anthony A.; Eldred, Michael S.; Swiler, Laura P.; Trucano, Timothy G.

This paper provides an overview of several approaches to formulating and solving optimization under uncertainty (OUU) engineering design problems. In addition, the topic of high-performance computing and OUU is addressed, with a discussion of the coarse- and fine-grained parallel computing opportunities in the various OUU problem formulations. The OUU approaches covered here are: sampling-based OUU, surrogate model-based OUU, analytic reliability-based OUU (also known as reliability-based design optimization), polynomial chaos-based OUU, and stochastic perturbation-based OUU.

More Details

Validation of the thermal challenge problem using Bayesian Belief Networks

Swiler, Laura P.

The thermal challenge problem has been developed at Sandia National Laboratories as a testbed for demonstrating various types of validation approaches and prediction methods. This report discusses one particular methodology to assess the validity of a computational model given experimental data. This methodology is based on Bayesian Belief Networks (BBNs) and can incorporate uncertainty in experimental measurements, in physical quantities, and model uncertainties. The approach uses the prior and posterior distributions of model output to compute a validation metric based on Bayesian hypothesis testing (a Bayes' factor). This report discusses various aspects of the BBN, specifically in the context of the thermal challenge problem. A BBN is developed for a given set of experimental data in a particular experimental configuration. The development of the BBN and the method for ''solving'' the BBN to develop the posterior distribution of model output through Monte Carlo Markov Chain sampling is discussed in detail. The use of the BBN to compute a Bayes' factor is demonstrated.

More Details

Confidence region estimation techniques for nonlinear regression :three case studies

Vugrin, Kay E.; Swiler, Laura P.; Roberts, Randall M.

This work focuses on different methods to generate confidence regions for nonlinear parameter identification problems. Three methods for confidence region estimation are considered: a linear approximation method, an F-test method, and a Log-Likelihood method. Each of these methods are applied to three case studies. One case study is a problem with synthetic data, and the other two case studies identify hydraulic parameters in groundwater flow problems based on experimental well-test results. The confidence regions for each case study are analyzed and compared. Although the F-test and Log-Likelihood methods result in similar regions, there are differences between these regions and the regions generated by the linear approximation method for nonlinear problems. The differing results, capabilities, and drawbacks of all three methods are discussed.

More Details

Calibration Under Uncertainty

Swiler, Laura P.; Trucano, Timothy G.

This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

More Details

A user's guide to Sandia's latin hypercube sampling software : LHS UNIX library/standalone version

Swiler, Laura P.; Wyss, Gregory D.

This document is a reference guide for the UNIX Library/Standalone version of the Latin Hypercube Sampling Software. This software has been developed to generate Latin hypercube multivariate samples. This version runs on Linux or UNIX platforms. This manual covers the use of the LHS code in a UNIX environment, run either as a standalone program or as a callable library. The underlying code in the UNIX Library/Standalone version of LHS is almost identical to the updated Windows version of LHS released in 1998 (SAND98-0210). However, some modifications were made to customize it for a UNIX environment and as a library that is called from the DAKOTA environment. This manual covers the use of the LHS code as a library and in the standalone mode under UNIX.

More Details

Algorithm development for Prognostics and Health Management (PHM)

Swiler, Laura P.; Swiler, Laura P.; Campbell, James E.; Lowder, Kelly S.; Doser, Adele D.

This report summarizes the results of a three-year LDRD project on prognostics and health management. System failure over some future time interval (an alternative definition is the capability to predict the remaining useful life of a system). Prognostics are integrated with health monitoring (through inspections, sensors, etc.) to provide an overall PHM capability that optimizes maintenance actions and results in higher availability at a lower cost. Our goal in this research was to develop PHM tools that could be applied to a wide variety of equipment (repairable, non-repairable, manufacturing, weapons, battlefield equipment, etc.) and require minimal customization to move from one system to the next. Thus, our approach was to develop a toolkit of reusable software objects/components and architecture for their use. We have developed two software tools: an Evidence Engine and a Consequence Engine. The Evidence Engine integrates information from a variety of sources in order to take into account all the evidence that impacts a prognosis for system health. The Evidence Engine has the capability for feature extraction, trend detection, information fusion through Bayesian Belief Networks (BBN), and estimation of remaining useful life. The Consequence Engine involves algorithms to analyze the consequences of various maintenance actions. The Consequence Engine takes as input a maintenance and use schedule, spares information, and time-to-failure data on components, then generates maintenance and failure events, and evaluates performance measures such as equipment availability, mission capable rate, time to failure, and cost. This report summarizes the capabilities we have developed, describes the approach and architecture of the two engines, and provides examples of their use. 'Prognostics' refers to the capability to predict the probability of

More Details

Application of finite element, global polynomial, and kriging response surfaces in Progressive Lattice Sampling designs

Romero, Vicente J.; Swiler, Laura P.; Giunta, Anthony A.

This paper examines the modeling accuracy of finite element interpolation, kriging, and polynomial regression used in conjunction with the Progressive Lattice Sampling (PLS) incremental design-of-experiments approach. PLS is a paradigm for sampling a deterministic hypercubic parameter space by placing and incrementally adding samples in a manner intended to maximally reduce lack of knowledge in the parameter space. When combined with suitable interpolation methods, PLS is a formulation for progressive construction of response surface approximations (RSA) in which the RSA are efficiently upgradable, and upon upgrading, offer convergence information essential in estimating error introduced by the use of RSA in the problem. The three interpolation methods tried here are examined for performance in replicating an analytic test function as measured by several different indicators. The process described here provides a framework for future studies using other interpolation schemes, test functions, and measures of approximation quality.

More Details
Results 301–335 of 335
Results 301–335 of 335