Dakota Sensitivity Analysis and Uncertainty Quantification with Examples
Abstract not provided.
Abstract not provided.
Abstract not provided.
53rd AIAA Aerospace Sciences Meeting
This paper supports a special session on "Frontiers of Uncertainty Management for Com- plex Aerospace Systems" with the intent of summarizing two aspects of the DOE/NNSA Accelerated Strategic Computing (ASC) program, each of which is focused on predictive science using complex simulation models. The first aspect is academic outreach, as enabled by the Predictive Science Academic Alliance Program (PSAAP). The second aspect is the Dakota project at Sandia National Laboratories, which develops and deploys uncertainty quantification capabilities focused on high fidelity modeling and simulation on large-scale parallel computers.
Journal of Aerospace Information Systems
In this paper, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory-epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.
Abstract not provided.
Abstract not provided.
SIAM Journal on Uncertainty Quantification
Abstract not provided.
This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.
This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers and advanced processor ar- chitectures. Finally, we briefly describe the MSM method for efficient calculation of electrostatic interactions on massively parallel computers.
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.
Reliability Engineering and System Safety
In the past several years, several international agencies have begun to collect data on human performance in nuclear power plant simulators [1]. This data provides a valuable opportunity to improve human reliability analysis (HRA), but there improvements will not be realized without implementation of Bayesian methods. Bayesian methods are widely used in to incorporate sparse data into models in many parts of probabilistic risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this article, we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities (HEPs) assigned by existing HRA methods. We demonstrate the methodology with a case study, wherein we use simulator data from the Halden Reactor Project to update the probability assignments from the SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of Bayesian methods to improve the technical basis of HRA.
Abstract not provided.
Abstract not provided.
One objective of the Climate Science for a Sustainable Energy Future (CSSEF) program is to develop the capability to thoroughly test and understand the uncertainties in the overall climate model and its components as they are being developed. The focus on uncertainties involves sensitivity analysis: the capability to determine which input parameters have a major influence on the output responses of interest. This report presents some initial sensitivity analysis results performed by Lawrence Livermore National Laboratory (LNNL), Sandia National Laboratories (SNL), and Pacific Northwest National Laboratory (PNNL). In the 2011-2012 timeframe, these laboratories worked in collaboration to perform sensitivity analyses of a set of CAM5, 2° runs, where the response metrics of interest were precipitation metrics. The three labs performed their sensitivity analysis (SA) studies separately and then compared results. Overall, the results were quite consistent with each other although the methods used were different. This exercise provided a robustness check of the global sensitivity analysis metrics and identified some strongly influential parameters.
Abstract not provided.
Abstract not provided.
SIAM Journal of Uncertainty Quantification
Abstract not provided.
Abstract not provided.
We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural error in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.
Studies in Computational Intelligence
Large-scale computational models have become common tools for analyzing complex man-made systems. However, when coupled with optimization or uncertainty quantification methods in order to conduct extensive model exploration and analysis, the computational expense quickly becomes intractable. Furthermore, these models may have both continuous and discrete parameters. One common approach to mitigating the computational expense is the use of response surface approximations. While well developed for models with continuous parameters, they are still new and largely untested for models with both continuous and discrete parameters. In this work, we describe and investigate the performance of three types of response surfaces developed for mixed-variable models: Adaptive Component Selection and Shrinkage Operator, Treed Gaussian Process, and Gaussian Process with Special Correlation Functions. We focus our efforts on test problems with a small number of parameters of interest, a characteristic of many physics-based engineering models. We present the results of our studies and offer some insights regarding the performance of each response surface approximation method. © 2014 Springer International Publishing Switzerland.
Abstract not provided.
Abstract not provided.
This report discusses the treatment of uncertainties stemming from relatively few samples of random quantities. The importance of this topic extends beyond experimental data uncertainty to situations involving uncertainty in model calibration, validation, and prediction. With very sparse data samples it is not practical to have a goal of accurately estimating the underlying probability density function (PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a specified percentile range of the actual PDF, say the range between 0.025 and .975 percentiles, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the desired percentile range of the actual PDF. The presence of the two opposing objectives makes the sparse-data uncertainty representation problem interesting and difficult. In this report, five uncertainty representation techniques are characterized for their performance on twenty-one test problems (over thousands of trials for each problem) according to these two opposing objectives and other performance measures. Two of the methods, statistical Tolerance Intervals and a kernel density approach specifically developed for handling sparse data, exhibit significantly better overall performance than the others.
This report summarizes the result of a NEAMS project focused on the use of reliability methods within the RAVEN and RELAP-7 software framework for assessing failure probabilities as part of probabilistic risk assessment for nuclear power plants. RAVEN is a software tool under development at the Idaho National Laboratory that acts as the control logic driver and post-processing tool for the newly developed Thermal-Hydraulic code RELAP-7. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. Reliability methods are algorithms which transform the uncertainty problem to an optimization problem to solve for the failure probability, given uncertainty on problem inputs and a failure threshold on an output response. The goal of this work is to demonstrate the use of reliability methods in Dakota with RAVEN/RELAP-7. These capabilities are demonstrated on a demonstration of a Station Blackout analysis of a simplified Pressurized Water Reactor (PWR).
Abstract not provided.
Abstract not provided.
This report summarizes the result of a NEAMS project focused on sensitivity analysis of a new model for the fission gas behavior (release and swelling) in the BISON fuel performance code of Idaho National Laboratory. Using the new model in BISON, the sensitivity of the calculated fission gas release and swelling to the involved parameters and the associated uncertainties is investigated. The study results in a quantitative assessment of the role of intrinsic uncertainties in the analysis of fission gas behavior in nuclear fuel.
Abstract not provided.
Abstract not provided.
International Journal for Uncertainty Quantification
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was to establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Reliability Engineering and System Safety
Sensitivity analysis is comprised of techniques to quantify the effects of the input variables on a set of outputs. In particular, sensitivity indices can be used to infer which input parameters most significantly affect the results of a computational model. With continually increasing computing power, sensitivity analysis has become an important technique by which to understand the behavior of large-scale computer simulations. Many sensitivity analysis methods rely on sampling from distributions of the inputs. Such sampling-based methods can be computationally expensive, requiring many evaluations of the simulation; in this case, the Sobol method provides an easy and accurate way to compute variance-based measures, provided a sufficient number of model evaluations are available. As an alternative, meta-modeling approaches have been devised to approximate the response surface and estimate various measures of sensitivity. In this work, we consider a variety of sensitivity analysis methods, including different sampling strategies, different meta-models, and different ways of evaluating variance-based sensitivity indices. The problem we consider is the 1-D Riemann problem. By a careful choice of inputs, discontinuous solutions are obtained, leading to discontinuous response surfaces; such surfaces can be particularly problematic for meta-modeling approaches. The goal of this study is to compare the estimated sensitivity indices with exact values and to evaluate the convergence of these estimates with increasing samples sizes and under an increasing number of meta-model evaluations. © 2011 Elsevier Ltd. All rights reserved.
Abstract not provided.
Proposed for publication in International Journal for Uncertainty Quantification.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.
Abstract not provided.
Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
This paper discusses the handling and treatment of uncertainties corresponding to relatively few data samples in experimental characterization of random quantities. The importance of this topic extends beyond experimental uncertainty to situations where the derived experimental information is used for model validation or calibration. With very sparse data it is not practical to have a goal of accurately estimating the underlying variability distribution (probability density function, PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a desired percentage of the actual PDF, say 95% included probability, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the random-variable range corresponding to the desired percentage of the actual PDF. The performance of a variety of uncertainty representation techniques is tested and characterized in this paper according to these two opposing objectives. An initial set of test problems and results is presented here from a larger study currently underway.
Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
This paper explores various frameworks to quantify and propagate sources of epistemic and aleatoric uncertainty within the context of decision making for assessing system performance relative to design margins of a complex mechanical system. If sufficient data is available for characterizing aleatoric-type uncertainties, probabilistic methods are commonly used for computing response distribution statistics based on input probability distribution specifications. Conversely, for epistemic uncertainties, data is generally too sparse to support objective probabilistic input descriptions, leading to either subjective probabilistic descriptions (e.g., assumed priors in Bayesian analysis) or non-probabilistic methods based on interval specifications. Among the techniques examined in this work are (1) Interval analysis, (2) Dempster-Shafer Theory of Evidence, (3) a second-order probability (SOP) analysis in which the aleatory and epistemic variables are treated separately, and a nested iteration is performed, typically sampling epistemic variables on the outer loop, then sampling over aleatory variables on the inner loop and (4) a Bayesian approach where plausible prior distributions describing the epistemic variable are created and updated using available experimental data. This paper compares the results and the information provided by different methods to enable decision making in the context of performance assessment when epistemic uncertainty is considered.
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the DAKOTA software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of DAKOTA-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many of DAKOTA's iterative analysis capabilities.
Abstract not provided.
Inverse Problems
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Surfpack is a library of multidimensional function approximation methods useful for efficient surrogate-based sensitivity/uncertainty analysis or calibration/optimization. I will survey current Surfpack meta-modeling capabilities for continuous variables and describe recent progress generalizing to both continuous and categorical factors, including relevant test problems and analysis comparisons.
Predictive Capability Maturity Model (PCMM) is a communication tool that must include a dicussion of the supporting evidence. PCMM is a tool for managing risk in the use of modeling and simulation. PCMM is in the service of organizing evidence to help tell the modeling and simulation (M&S) story. PCMM table describes what activities within each element are undertaken at each of the levels of maturity. Target levels of maturity can be established based on the intended application. The assessment is to inform what level has been achieved compared to the desired level, to help prioritize the VU activities & to allocate resources.
Abstract not provided.
Abstract not provided.
This paper compares three approaches for model selection: classical least squares methods, information theoretic criteria, and Bayesian approaches. Least squares methods are not model selection methods although one can select the model that yields the smallest sum-of-squared error function. Information theoretic approaches balance overfitting with model accuracy by incorporating terms that penalize more parameters with a log-likelihood term to reflect goodness of fit. Bayesian model selection involves calculating the posterior probability that each model is correct, given experimental data and prior probabilities that each model is correct. As part of this calculation, one often calibrates the parameters of each model and this is included in the Bayesian calculations. Our approach is demonstrated on a structural dynamics example with models for energy dissipation and peak force across a bolted joint. The three approaches are compared and the influence of the log-likelihood term in all approaches is discussed.
Abstract not provided.
Abstract not provided.
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.
Abstract not provided.
Abstract not provided.
Importance sampling is an unbiased sampling method used to sample random variables from different densities than originally defined. These importance sampling densities are constructed to pick 'important' values of input random variables to improve the estimation of a statistical response of interest, such as a mean or probability of failure. Conceptually, importance sampling is very attractive: for example one wants to generate more samples in a failure region when estimating failure probabilities. In practice, however, importance sampling can be challenging to implement efficiently, especially in a general framework that will allow solutions for many classes of problems. We are interested in the promises and limitations of importance sampling as applied to computationally expensive finite element simulations which are treated as 'black-box' codes. In this paper, we present a customized importance sampler that is meant to be used after an initial set of Latin Hypercube samples has been taken, to help refine a failure probability estimate. The importance sampling densities are constructed based on kernel density estimators. We examine importance sampling with respect to two main questions: is importance sampling efficient and accurate for situations where we can only afford small numbers of samples? And does importance sampling require the use of surrogate methods to generate a sufficient number of samples so that the importance sampling process does increase the accuracy of the failure probability estimate? We present various case studies to address these questions.
Abstract not provided.
Reliability Engineering and System Safety
Abstract not provided.
This report documents the results of an FY09 ASC V&V Methods level 2 milestone demonstrating new algorithmic capabilities for mixed aleatory-epistemic uncertainty quantification. Through the combination of stochastic expansions for computing aleatory statistics and interval optimization for computing epistemic bounds, mixed uncertainty analysis studies are shown to be more accurate and efficient than previously achievable. Part I of the report describes the algorithms and presents benchmark performance results. Part II applies these new algorithms to UQ analysis of radiation effects in electronic devices and circuits for the QASPR program.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Annals of New York Academy of Sciences
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Response surface functions are often used as simple and inexpensive replacements for computationally expensive computer models that simulate the behavior of a complex system over some parameter space. "Progressive" response surfaces are built up incrementally as global information is added from new sample points added to the previous points in the parameter space. As the response surfaces are globally upgraded, indicators of the convergence of the response surface approximation to the exact (fitted) function can be inferred. Sampling points can be incrementally added in a structured or unstructured fashion. Whatever the approach, it is usually desirable to sample the entire parameter space uniformly (at least in early stages of sampling). At later stages of sampling, depending on the nature of the quantity being resolved, it may be desirable to continue sampling uniformly (progressive response surfaces), or to switch to a focusing/economizing strategy of preferentially sampling certain regions of the parameter space based on information gained in previous stages of sampling ("adaptive" response surfaces). Here we consider progressive response surfaces where a balanced representation of global response over the parameter space is desired. We use Kriging and Moving-Least-Squares methods to fit Halton quasi-Monte-Carlo data samples and interpolate over the parameter space. On 2-D test problems we use the response surfaces to compute various response measures and assess the accuracy/applicability of heuristic error estimates based on convergence behavior of the computed response quantities. Where applicable we apply Richardson Extrapolation for estimates of error, and assess the accuracy of these estimates. We seek to develop a robust methodology for constructing progressive response surface approximations with reliable error estimates.
This project focused on research and algorithmic development in optimization under uncertainty (OUU) problems driven by earth penetrator (EP) designs. While taking into account uncertainty, we addressed three challenges in current simulation-based engineering design and analysis processes. The first challenge required leveraging small local samples, already constructed by optimization algorithms, to build effective surrogate models. We used Gaussian Process (GP) models to construct these surrogates. We developed two OUU algorithms using 'local' GPs (OUU-LGP) and one OUU algorithm using 'global' GPs (OUU-GGP) that appear competitive or better than current methods. The second challenge was to develop a methodical design process based on multi-resolution, multi-fidelity models. We developed a Multi-Fidelity Bayesian Auto-regressive process (MF-BAP). The third challenge involved the development of tools that are computational feasible and accessible. We created MATLAB{reg_sign} and initial DAKOTA implementations of our algorithms.
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.
Abstract not provided.
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This document provides verification test results for normal, lognormal, and uniform distributions that are used in Sandia's Latin Hypercube Sampling (LHS) software. The purpose of this testing is to verify that the sample values being generated in LHS are distributed according to the desired distribution types. The testing of distribution correctness is done by examining summary statistics, graphical comparisons using quantile-quantile plots, and format statistical tests such as the Chisquare test, the Kolmogorov-Smirnov test, and the Anderson-Darling test. The overall results from the testing indicate that the generation of normal, lognormal, and uniform distributions in LHS is acceptable.
Abstract not provided.
Abstract not provided.
Collection of Technical Papers - 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
Surfpack is a general-purpose software library of multidimensional function approximation methods for applications such as data visualization, data mining, sensitivity analysis, uncertainty quantification, and numerical optimization. Surfpack is primarily intended for use on sparse, irregularly-spaced, n-dimensional data sets where classical function approximation methods are not applicable. Surfpack is under development at Sandia National Laboratories, with a public release of Surfpack version 1.0 in August 2006. This paper provides an overview of Surfpack's function approximation methods along with some of its software design attributes. In addition, this paper provides some simple examples to illustrate the utility of Surfpack for data trend analysis, data visualization, and optimization. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc.
Abstract not provided.
Abstract not provided.
This paper provides an overview of several approaches to formulating and solving optimization under uncertainty (OUU) engineering design problems. In addition, the topic of high-performance computing and OUU is addressed, with a discussion of the coarse- and fine-grained parallel computing opportunities in the various OUU problem formulations. The OUU approaches covered here are: sampling-based OUU, surrogate model-based OUU, analytic reliability-based OUU (also known as reliability-based design optimization), polynomial chaos-based OUU, and stochastic perturbation-based OUU.
The thermal challenge problem has been developed at Sandia National Laboratories as a testbed for demonstrating various types of validation approaches and prediction methods. This report discusses one particular methodology to assess the validity of a computational model given experimental data. This methodology is based on Bayesian Belief Networks (BBNs) and can incorporate uncertainty in experimental measurements, in physical quantities, and model uncertainties. The approach uses the prior and posterior distributions of model output to compute a validation metric based on Bayesian hypothesis testing (a Bayes' factor). This report discusses various aspects of the BBN, specifically in the context of the thermal challenge problem. A BBN is developed for a given set of experimental data in a particular experimental configuration. The development of the BBN and the method for ''solving'' the BBN to develop the posterior distribution of model output through Monte Carlo Markov Chain sampling is discussed in detail. The use of the BBN to compute a Bayes' factor is demonstrated.
Abstract not provided.
This work focuses on different methods to generate confidence regions for nonlinear parameter identification problems. Three methods for confidence region estimation are considered: a linear approximation method, an F-test method, and a Log-Likelihood method. Each of these methods are applied to three case studies. One case study is a problem with synthetic data, and the other two case studies identify hydraulic parameters in groundwater flow problems based on experimental well-test results. The confidence regions for each case study are analyzed and compared. Although the F-test and Log-Likelihood methods result in similar regions, there are differences between these regions and the regions generated by the linear approximation method for nonlinear problems. The differing results, capabilities, and drawbacks of all three methods are discussed.
Abstract not provided.
Proposed for publication in Structure and Infrastructure Engineering.
Abstract not provided.
This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This document is a reference guide for the UNIX Library/Standalone version of the Latin Hypercube Sampling Software. This software has been developed to generate Latin hypercube multivariate samples. This version runs on Linux or UNIX platforms. This manual covers the use of the LHS code in a UNIX environment, run either as a standalone program or as a callable library. The underlying code in the UNIX Library/Standalone version of LHS is almost identical to the updated Windows version of LHS released in 1998 (SAND98-0210). However, some modifications were made to customize it for a UNIX environment and as a library that is called from the DAKOTA environment. This manual covers the use of the LHS code as a library and in the standalone mode under UNIX.
This report summarizes the results of a three-year LDRD project on prognostics and health management. System failure over some future time interval (an alternative definition is the capability to predict the remaining useful life of a system). Prognostics are integrated with health monitoring (through inspections, sensors, etc.) to provide an overall PHM capability that optimizes maintenance actions and results in higher availability at a lower cost. Our goal in this research was to develop PHM tools that could be applied to a wide variety of equipment (repairable, non-repairable, manufacturing, weapons, battlefield equipment, etc.) and require minimal customization to move from one system to the next. Thus, our approach was to develop a toolkit of reusable software objects/components and architecture for their use. We have developed two software tools: an Evidence Engine and a Consequence Engine. The Evidence Engine integrates information from a variety of sources in order to take into account all the evidence that impacts a prognosis for system health. The Evidence Engine has the capability for feature extraction, trend detection, information fusion through Bayesian Belief Networks (BBN), and estimation of remaining useful life. The Consequence Engine involves algorithms to analyze the consequences of various maintenance actions. The Consequence Engine takes as input a maintenance and use schedule, spares information, and time-to-failure data on components, then generates maintenance and failure events, and evaluates performance measures such as equipment availability, mission capable rate, time to failure, and cost. This report summarizes the capabilities we have developed, describes the approach and architecture of the two engines, and provides examples of their use. 'Prognostics' refers to the capability to predict the probability of
Abstract not provided.
This paper examines the modeling accuracy of finite element interpolation, kriging, and polynomial regression used in conjunction with the Progressive Lattice Sampling (PLS) incremental design-of-experiments approach. PLS is a paradigm for sampling a deterministic hypercubic parameter space by placing and incrementally adding samples in a manner intended to maximally reduce lack of knowledge in the parameter space. When combined with suitable interpolation methods, PLS is a formulation for progressive construction of response surface approximations (RSA) in which the RSA are efficiently upgradable, and upon upgrading, offer convergence information essential in estimating error introduced by the use of RSA in the problem. The three interpolation methods tried here are examined for performance in replicating an analytic test function as measured by several different indicators. The process described here provides a framework for future studies using other interpolation schemes, test functions, and measures of approximation quality.