Graphene Oxide Desalination Membrane Development and Testing for Greywater Reuse Applications
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The goal of this SAND report is to provide guidance for other groups hosting workshops and peerto-peer learning events at Sandia. Thus this SAND report provides detail about our team structure, how we brainstormed workshop topics and developed the workshop structure. A Workshop “Nuts and Bolts” section provides our timeline and check-list for workshop activities. The survey section provides examples of the questions we asked and how we adapted the workshop in response to the feedback.
Abstract not provided.
Langmuir
Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir-Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10-25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. We hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physica Status Solidi (A) Applications and Materials Science
Electrical current leakage paths in AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) are identified using conductive atomic force microscopy. Open-core threading dislocations are found to conduct current through insulating Al
Abstract not provided.
Journal of Applied Physics
Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al 0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations. © 2014 AIP Publishing LLC.
Abstract not provided.
Advanced Functional Materials
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ECS Transactions
Emerging semiconductor switches based on the wide-bandgap semiconductor GaN have the potential to significantly improve the efficiency of portable power applications such as transportable energy storage. Such applications are likely to become more widespread as renewables such as wind and solar continue to come on-line. However, the long-term reliability of GaN-based power devices is relatively unexplored. In this paper, we describe joint work between Sandia National Laboratories and MIT on highvoltage AlGaN/GaN high electron mobility transistors. It is observed that the nature of current collapse is a strong function of bias conditions as well as device design, where factors such as Al composition in the barrier layer and surface passivation play a large role. Thermal and optical recovery experiments are performed to ascertain the nature of charge trapping in the device. Additionally, Kelvin-force microscopy measurements are used to evaluate the surface potential within the device. © The Electrochemical Society.