Electromagnetic Theory at Sandia National Laboratories
Abstract not provided.
Abstract not provided.
2017 International Applied Computational Electromagnetics Society Symposium - Italy, ACES 2017
The goal of this paper is to investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We realize a 2×2 pixelated array structure that supports two wavelengths of operation. After designing each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array, we construct a supercell made of a 2×2 pixelated array with periodic boundary conditions mimicking the full NED. In the NED, each pixel comprises 10-20 nanoantennas. Our simulations account for the cross-talk between contiguous pixels. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. We want to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.
The growth of a cylindrical s park discharge channel in water and Lexan is studied using a series of one - dimensional simulations with the finite - element radiation - magnetohydrodynamics code ALEGRA. Computed solutions are analyzed in order to characterize the rate of growth and dynamics of the spark c hannels during the rising - current phase of the drive pulse. The current ramp rate is varied between 0.2 and 3.0 kA/ns, and values of the mechanical coupling coefficient K p are extracted for each case. The simulations predict spark channel expansion veloc ities primarily in the range of 2000 to 3500 m/s, channel pressures primarily in the range 10 - 40 GPa, and K p values primarily between 1.1 and 1.4. When Lexan is preheated, slightly larger expansion velocities and smaller K p values are predicted , but the o verall behavior is unchanged.
Abstract not provided.
Journal of Electromagnetic Waves and Applications
This paper details a model for the response of a finite- or an infinite-length wire interacting with a conducting ground to an electromagnetic pulse excitation. We develop a frequency–domain method based on transmission line theory that we name ATLOG–Analytic Transmission Line Over Ground. This method is developed as an alternative to full-wave methods, as it delivers a fast and reliable solution. It allows for the treatment of finite or infinite lossy, coated wires, and lossy grounds. The cases of wire above ground, as well as resting on the ground and buried beneath the ground are treated. The reported method is general and the time response of the induced current is obtained using an inverse Fourier transform of the current in the frequency domain. The focus is on the characteristics and propagation of the transmission line mode. Comparisons with full-wave simulations strengthen the validity of the proposed method.
Abstract not provided.
Abstract not provided.
ACS Photonics
We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple "bright" dipole modes to "dark" dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurface that achieves a quality factor of ∼1300 at ∼10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (∼1 μm): a silicon-based implementation that achieves a quality factor of ∼350; and a gallium arsenide-based structure that achieves a quality factor of ∼600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. We envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.
Abstract not provided.
2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016
Cable shielding to protect against coupling of electromagnetic radiation into a component or circuit, particularly over large frequency bands, is at times a challenging task. It is general understanding that increasing the number of shields of a cable will improve the shielding performance. However, there are situations in which a cable with multiple shields may perform similar to or in some cases worse than a cable with a single shield, and this analysis has seldom been discussed in the literature. We intend to shed more light onto this topic in this paper.
2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016
Metamaterial dielectric resonators represent a promising path toward low-loss metamaterials at optical frequencies. In this paper we utilize perturbations of high symmetry resonator geometries, such as cubes, either to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering and Huygens' metasurfaces, or to induce couplings between the otherwise orthogonal resonator modes to achieve high-quality factor Fano resonances. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.
This report examines bounds on the penetrant power through ports of entry into a conductive cavity. We first replace the cavity by a load and consider the maximum power transfer properties of an antenna or an aperture. We consider how limitations on the load quality factor place limits on received power. For general frequency ranges we model the backing region by means of a uniformly distributed matched load along a slot aperture and adjust its value for maximum power transfer. This result is derived in closed form using a transmission line model for the aperture. This result illustrates the reduction in received power for low frequencies with finitely conducting wall materials. At high frequencies it approaches the receiving cross section of a linear array having the slot length dimension. Next we examine a slot aperture in a conducting rectangular enclosure and determine how the cavity wall losses and resulting quality factor limit the penetrant power. Detailed simulations and experimental measurements are compared with each other and with the bounding results to assess the accuracy of the bounds. These comparisons also indicate limitations on the accuracy of the models due to perturbing influences in construction, such as bolted joints.
Streamers are a type of ionization wave occurring during the early time phase of a gas discharge. They are typically launched when the evolving space charge of an electron avalanche reaches a certain critical level, beyond which the fi eld of the space charge itself is su ffi cient to drive further evolution of the ionization process. One of the most common ways to model streamers is known as a 1.5D model where the fi eld of a uniformly charged set of discs of chosen radius is evaluated along the cylinder axis. This fi eld drives a one-dimensional kinetic ionization process, which results in the nonlinear evolution of the streamer. This model is e ffi cient, but has the drawback of fi xing the radius and requiring it as an input parameter. Previously, we tried to extend t he 1.5D model to include evolution of its radius by developing a two-step process of axial and radial exp ansion but we encountered stability issues with the model that we thought could have been due to decoupling the two steps. In this report we introduce a new formulation of a streamer model that includes radial expansion. The goal is to take radial moments of the starting axisymmetric fl uid equations and thereby include the radial evolution of the streamer naturally and self-consistently from the beginning. We fi rst develop the fl uid model moments without electron attachment. We review the calculation of the electric fi elds required for the model and investigate approximations to improve computational e ffi ciency. We discuss the code implementation of the model and fi nally, we add attachment to allow the treatment of electronegative gases. Intentionally Left Blank
The di ff usion through shells consisting of either a single conducting or double conducting layers are examined. Exterior drives resulting from Electromagn etic Radiation (EMR), Electromagnetic Pulse (EMP), nearby (indirect) lightning, and DC (low frequency) magnetic fi eldsareused. Boththeinterior fi eld and the induced voltage from a maximally oriented and sized single turn loop are estimated. It is shown that the loop voltage with the empty cavity bounds the case where the center region is excluded by a conducting object. The cases of interior magnetic and electric fi elds from an exterior magnetic drive and the interior electric fi eld from an exterior electric drive are both solved; the magnetic interior fi eldfromanexterior magnetic drive is the only case that results in a nonzero low frequency penetration. Intentionally Left Blank
Abstract not provided.
Abstract not provided.
Abstract not provided.
Progress In Electromagnetics Research C
In this paper we report on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. However, this is not always the case, and a cable with multiple shields may perform similar to or in some cases worse than a cable with a single shield. We want to shed more light on these situations, which represent the main focus of this paper.
Progress In Electromagnetics Research B
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.
Abstract not provided.
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.
Microwave and Optical Technology Letters
In this article, a negative-index metamaterial prism based on a composite unit cell containing a split-ring resonator and a z-dipole is designed and simulated. The design approach combines simulations of a single unit cell to identify the appropriate cell design (yielding the desired negative-index behavior) together with subcell modeling (which simplifies the mesh representation of the resonator geometry and allows for a larger number of resonator cells to be handled). In addition to describing the methodology used to design a n = -1 refractive index prism, results including the effective-medium parameters, the far-field scattered patterns, and the near-zone field distributions corresponding to a normally incident plane-wave excitation of the prism are presented.
2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2014 - Proceedings
The goal of this paper is to define a unit cell containing an electric and magnetic complement and degenerate pair of resonators and subsequently construct a 3-dimensional (3D) n = -1 refractive index prism based upon the final unit cell design. In this effort simulating and observing the response of a negative-index metamaterial (MM) prism to a plane-wave excitation was a primary intent. However, an equally-important goal was to develop an efficient and high-fidelity process for arriving at the prism design.
Optics Express and arxiv
Abstract not provided.
This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank