Publications

Results 101–150 of 184
Skip to search filters

Electromagnetic field limits set by the V-Curve

Warne, Larry K.; Jorgenson, Roy E.

When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

More Details

Electromagnetic coupling into two standard calibration shields on the Sandia cable tester

Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Chen, Kenneth C.

This report presents analytic transmission line models for calculating the shielding effectiveness of two common calibration standard cables. The two cables have different canonical aperture types, which produce the same low frequency coupling but different responses at resonance. The dominant damping mechanism is produced by the current probe loads at the ends of the cables, which are characterized through adaptor measurements. The model predictions for the cables are compared with experimental measurements and good agreement between the results is demonstrated. This setup constitutes a nice repeatable geometry that nevertheless exhibits some of the challenges involved in modeling non-radio frequency geometries.

More Details

Lightning responses on a finite cylindrical enclosure

Progress In Electromagnetics Research B

Chen, Kenneth C.; Warne, Larry K.; Lee, Kelvin S.H.

The voltage on a single-turn loop inside an enclosure characterizes the enclosure shielding effectiveness against a lightning insult. In this paper, the maximum induced voltage on a single-turn loop inside an enclosure from lightning coupling to a metal enclosure wall is expressed in terms of two multiplicative factors: (A) the normalized enclosure wall peak penetration ratio (i.e., ratio of the peak interior electric field multiplied by the sheet conductance to the exterior magnetic field) and (B) the DC voltage on an ideal optimum coupling loop assuming the ideal penetration ratio of one. As a result of the decomposition, the variation of the peak penetration ratio (A) for different coupling mechanisms is found to be small; the difference in the maximum voltage hence arises from the DC voltage on the optimum coupling loop (B). Maximum voltages on an optimum coupling loop inside a finite cylinder enclosure for direct attachment and a lightning line source at different distances from the enclosure are given in Table 3.

More Details

Conductor fusing and gapping for bond wires

Progress in Electromagnetics Research M

Chen, Kenneth C.; Warne, Larry K.; Kinzel, Robert L.; Huff, Johnathon H.; McLean, Michael M.; Jenkins, Mark W.; Rutherford, Brian M.

In this paper, fusing of a metallic conductor is studied by judiciously using the solution of the one-dimensional heat equation, resulting in an approximate method for determining the threshold fusing current. The action is defined as an integration of the square of the wire current over time. The burst action (the action required to completely vaporize the material) for an exploding wire is then used to estimate the typical wire gapping action (involving wire fusing), from which gapping time can be estimated for a gapping current greater than a factor of two over the fusing current. The test data are used to determine the gapped length as a function of gapping current and to show, for a limited range, that the gapped length is inversely proportional to gapping time. The gapping length can be used as a signature of the fault current level in microelectronic circuits.

More Details

Loop-to-loop coupling

Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Salazar, Robert S.; Coleman, Phillip D.; Lucero, Larry M.

This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

More Details

Linear diffusion into a faraday cage

Progress In Electromagnetics Research M

Chen, Kenneth C.; Lin, Y.T.; Warne, Larry K.; Merewether, Kimball O.

In this paper, linear lightning diffusion into a Faraday cage is studied. The high-altitude Electromagnetic Pulse (HEMP) and nearby lightning are used as examples for a uniform field drive and the direct-strike lightning adjacent to the enclosure is used as a worst-case configuration of a line source excitation. The time-derivative of the magnetic field (HDOT) inside the enclosure for a uniform field drive with a decaying exponential waveform is analyzed and numerically determined. The physically relevant time-derivative of the magnetic field and voltage characterizations of an optimum coupling loop inside the enclosure for a decaying exponential waveform in a worst-case line source coupling configuration are numerically determined. First, the impulse and the unit step response peaks are shown to bound the decaying exponential peaks. Next, a simple fit function for a decaying exponential peak HDOT or a voltage bound for a single-turn loop inside the Faraday cage is constructed from peak responses of the unit step and impulse limiting cases. Excitations used are from (1) a uniform field drive of HEMP or nearby lightning and (2) a line source of direct-strike lightning. Comparisons of HDOT and voltage bounds of the fit function and actual numerical evaluations are given in Table 3.

More Details

A Summary of the Theory and Design Team Efforts for the Sandia Metamaterials Science and Technology Grand Challenge LDRD

Basilio, Lorena I.; Brener, Igal B.; Burckel, David B.; Shaner, Eric A.; Wendt, J.R.; Luk, Ting S.; Ellis, A.R.; Bender, Daniel A.; Clem, Paul G.; Rasberry, Roger D.; Langston, William L.; Ihlefeld, Jon I.; Dirk, Shawn M.; Warne, Larry K.; Peters, D.W.; El-Kady, I.; Reinke, Charles M.; Loui, Hung L.; Williams, Jeffery T.; Sinclair, Michael B.; McCormick, Frederick B.

Abstract not provided.

Protection characteristics of a Faraday cage compromised by lightning burnthrough

Warne, Larry K.; Martinez, Leonard E.; Jorgenson, Roy E.; Merewether, Kimball O.; Jojola, John M.; Coats, Rebecca S.; Bystrom, Edward B.

A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scope and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).

More Details

Impact of time-varying loads on the programmable pulsed power driver called genesis

Digest of Technical Papers-IEEE International Pulsed Power Conference

Glover, Steven F.; Davis, Jean-Paul D.; Schneider, Larry X.; Reed, Kim W.; Pena, Gary P.; Hall, Clint A.; Hanshaw, Heath L.; Hickman, Randy J.; Hodge, K.C.; Lemke, Raymond W.; Lehr, J.M.; Lucero, D.J.; McDaniel, Dillon H.; Puissant, J.G.; Rudys, Joseph M.; Sceiford, Matthew S.; Tullar, S.J.; Van De Valde, D.M.; White, F.E.; Warne, Larry K.; Coats, Rebecca S.; Johnson, William Arthur.

The success of dynamic materials properties research at Sandia National Laboratories has led to research into ultra-low impedance, compact pulsed power systems capable of multi-MA shaped current pulses with rise times ranging from 220-500 ns. The Genesis design consists of two hundred and forty 200 kV, 80 kA modules connected in parallel to a solid dielectric disk transmission line and is capable of producing 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a 1.75 nH, 20 mm wide stripline load. Stripline loads operating under these conditions expand during the experiment resulting in a time-varying load that can impact the performance and lifetime of the system. This paper provides analysis of time-varying stripline loads and the impact of these loads on system performance. Further, an approach to reduce dielectric stress levels through active damping is presented as a means to increase system reliability and lifetime. © 2011 IEEE.

More Details

Modeling Braided Shields via multipole representations for the braid charges and currents

Proceedings - 2011 International Conference on Electromagnetics in Advanced Applications, ICEAA'11

Johnson, William Arthur.; Langston, William L.; Basilio, Lorena I.; Warne, Larry K.

A first principles calculation for the transfer capacitance of a Beldon cable is carried out by the use of filamentary constant, dipole, quadrupole, and octopole unknown charges placed at the center of each braid wire. Results are compared with full electrostatic simulations and a phenomenological model. © 2011 IEEE.

More Details

A negative-index metamaterial design based on metal-core, dielectric shell resonators

IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)

Basilio, L.I.; Warne, Larry K.; Langston, William L.; Johnson, William Arthur.; Sinclair, M.B.

In this paper a simple effective-media analysis (including higher-order multipoles) is used to design a single-resonator, negative-index design based on a metal-core, dielectric-shell (MCDS) unit cell. In addition to comparing the performance of the MCDS design to other core-shell negative-index designs, performance trade-offs resulting from the relative positioning of the electric and magnetic modal resonances in the MCDS design are also discussed. © 2011 IEEE.

More Details

Subcell models with application to split-ring resonators in the infrared

IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)

Johnson, William Arthur.; Warne, Larry K.; Basilio, Lorena I.; Langston, W.L.; Sinclair, M.B.

Simplified wire-type models for split-ring resonators (SRRs), both in free-space and above a dielectric half-space, are developed. The gap of the SRR in the wire model is accurately represented by including a lumped load which is the difference between the actual gap fringe capacitance and the capacitance inherent in the code wire kernel for a delta gap voltage source. The SRR arms are represented by generalized thin wires that have both an electric equivalent radius (for the rectangular conductor resting on a dielectric substrate) and a magnetic equivalent radius (for a rectangular conductor in free space, since the substrate is assumed to be nonmagnetic). In addition, an impedance per unit length (due to finite penetration of the fields into the metal) enters a local transmission line part of the generalized thin-wire algorithm. The results from the thin-wire subcell model are compared to full wave simulations of the arrays of SRR's. The full wave simulations require tens of thousands of unknowns to resolve the field penetration into the finite conductors for a single SRR, whereas the thin-wire model has good accuracy with only tens of unknowns. © 2011 IEEE.

More Details

Time harmonic two-dimensional cavity scar statistics: Convex mirrors and bowtie

Electromagnetics

Warne, Larry K.; Jorgenson, Roy E.; Kotulski, J.D.; Lee, K.S.H.

This article examines the localization of time harmonic high-frequency modal fields in two-dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This article examines the enhancements for these unstable orbits when the opposing mirrors are convex, constructing the high-frequency field in the scar region using elliptic cylinder coordinates in combination with a random reflection phase from the outer chaotic region. The enhancements when the cavity is symmetric as well as asymmetric about the orbit are examined. © Taylor & Francis Group, LLC.

More Details

An effective media toolset for use in metamaterial design

Warne, Larry K.; Johnson, William Arthur.; Langston, William L.; Sinclair, Michael B.

This paper introduces an effective-media toolset that can be used for the design of metamaterial structures based on metallic components such as split-ring resonators and dipoles, as well as dielectric spherical resonators. For demonstration purposes the toolset will be used to generate infrared metamaterial designs, and the predicted performances will be verified with full-wave numerical simulations.

More Details

Electromagnetic coupling between transmitters and electro-explosive devices located within an enclosure

Jorgenson, Roy E.; Warne, Larry K.; Coats, Rebecca S.

This report documents calculations conducted to determine if 42 low-power transmitters located within a metallic enclosure can initiate electro-explosive devices (EED) located within the same enclosure. This analysis was performed for a generic EED no-fire power level of 250 mW. The calculations show that if the transmitters are incoherent, the power available is 32 mW - approximately one-eighth of the assumed level even with several worst-case assumptions in place.

More Details

Surface interactions involved in flashover with high density electronegative gases

Warne, Larry K.; Jorgenson, Roy E.; Lehr, J.M.

This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

More Details

Streamer initiation in volume and surface discharges in atmospheric gases

Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC

Lehr, J.M.; Warne, Larry K.; Jorgenson, Roy E.; Wallace, Z.R.; Hodge, K.C.; Caldwell, Michele C.

It is generally acknowledged that once a highly conductive channel is established between two charged and conducting materials, electrical breakdown is well established and difficult to interrupt. An understanding of the initiation mechanism for electrical breakdown is crucial for devising mitigating methods to avoid catastrophic failures. Both volumetric and surface discharges are of interest. An effort is underway where experiments and theory are being simultaneously developed. The experiment consists of an impedance matched discharge chamber capable of investigating various gases and pressures to ten atmospheres. In addition to current and voltage measurements, a high dynamic range streak camera records streamer velocities. The streamer velocities are particularly valuable for comparison with theory. A streamer model is being developed which includes photo-ionization and particle interactions with an insulating surface. The combined theoretical and experimental effort is aimed at detailed comparisons of streamer development as well as a quantitative understanding of how streamers interact with dielectric surfaces and the resulting effects on breakdown voltage. © 2008 IEEE.

More Details
Results 101–150 of 184
Results 101–150 of 184