Publications

Results 151–162 of 162
Skip to search filters

Particle migration rates in a Couette apparatus

Advances in Fluid Mechanics

Hsiao, S.C.; Christensen, D.; Ingber, Marc S.; Mondy, L.A.; Altobelli, S.A.

Bulk migration of particles towards regions of lower shear occurs in suspensions of neutrally buoyant spheres in Newtonian fluids undergoing creeping flow in the annular region between two rotating, coaxial cylinders (a wide-gap Couette). For a monomodal suspension of spheres in a viscous fluid, dimensional analysis indicates that the rate of migration at a given concentration should scale with the square of the sphere radius. However, a previous experimental study [12] showed that the rate of migration of spherical particles at 50% volume concentration actually scaled with the sphere radius to approximately the 2.9 power. In the current study, a series of experiments is performed to extend the previous study to two new concentrations, namely, 35% and 42.5%. The new study indicates that the power scaling decreases with concentration.

More Details

Three-dimensional boundary element simulations of concentrated suspensions in a spinning ball rheometer

Proposed for publication in Communications in Numerical Methods in Engineering.

Grillet, Anne M.; Mondy, L.A.

The spinning ball rheometer has been proposed as a method to measure rheological properties of concentrated suspensions. Recent experiments have shown that the measured extra torque on the spinning ball decreases as the radius of the spinning ball becomes comparable to the size of the suspended particle. We have performed a series of three dimensional boundary element calculations of the rheometer geometry to probe the microstructure effects that contribute to the apparent 'slip.' We will present a series of snap-shot results as well as several transient calculations which are compared to the available experimental data. The computational limitations of these large-scale simulations shall also be discussed.

More Details

Apparent slip at the surface of a ball spinning in a concentrated suspension

Proposed for publication in the Journal of Fluid Mechanics.

Mondy, L.A.; Grillet, Anne M.; Henfling, John F.

The couple on a ball rotating relative to an otherwise quiescent suspension of comparably-sized, neutrally buoyant spheres is studied both experimentally and numerically. Apparent 'slip' relative to the analytical solution for a sphere spinning in a Newtonian fluid (based upon the viscosity of the suspension) is determined in suspensions with volume fractions c ranging from 0.03 to 0.50. This apparent slip results in a decrease of the measured torque on the spinning ball when the radius of the ball becomes comparable with that of the suspended spheres. Over the range of our data, the slip becomes more pronounced as the concentration c increases. At c = 0.25, three-dimensional boundary-element simulations agree well with the experimental data. Moreover, at c = 0.03, good agreement exists between such calculations and theoretical predictions of rotary slip in dilute suspensions.

More Details

Chemically selective NMR imaging of a 3-component (solid-solid-liquid) sedimenting system

Journal of Magnetic Resonance

Beyea, Steven D.; Altobelli, Stephen A.; Mondy, L.A.

A novel magnetic resonance imaging (MRI) technique which resolves the separate components of the evolving vertical concentration profiles of 3-component non-colloidal suspensions is described. This method exploits the sensitivity of MRI to chemical differences between the three phases to directly image the fluid phase and one of the solid phases, with the third phase obtained by subtraction. 19F spin-echo imaging of a polytetrafluoroethylene (PTFE) oil was interlaced with 1H SPRITE imaging of low-density polyethylene (LDPE) particles. The third phase was comprised of borosilicate glass spheres, which were not visible while imaging the PTFE or LDPE phases. The method is demonstrated by performing measurements on 2-phase materials containing only the floating (LDPE) particles, with the results contrasted to the experimental behaviour of the individual phases in the full 3-phase system. All experiments were performed using nearly monodisperse particles, with initial suspension volume fractions, φi, of 0.1. © 2003 Elsevier Science (USA). All rights reserved.

More Details

NMR measurements and simulations of particle migration in non-Newtonian fluids

Chemical Engineering Communications

Rao, Rekha R.; Mondy, L.A.; Baer, Thomas A.; Altobelli, Stephen A.; Stephens, Thomas S.

Shear-induced migration of particles is studied during the slow flow of suspensions of neutrally buoyant spheres, at 50% particle volume fraction, in an inelastic but shear-thinning, suspending fluid. The suspension is flowing in between a rotating inner cylinder and a stationary outer cylinder. The conditions are such that nonhydrodynamic effects are negligible. Nuclear magnetic resonance (NMR) imaging demonstrates that the movement of particles away from the high shear rate region is more pronounced than for a Newtonian suspending liquid. We test a continuum constitutive model for the evolution of particle concentration in a flowing suspension proposed by Phillips et al., but extended to shear-thinning, suspending fluids. The fluid constitutive equation is Carreau-like in its shear-thinning behavior but also varies with the local particle concentration. The model captures many of the trends found in the experimental data, but does not yet agree quantitatively. In fact, quantitative agreement with a diffusive flux constitutive equation would be impossible without the addition of another fitting parameter that may depend on the shear-thinning nature of the suspending fluid. Because of this, we feel that the Phillips model may be fundamentally inadequate for simulating flows of particles in non-Newtonian suspending fluids without the introduction of a normal stress correction or other augmenting terms.

More Details

Verification and Validation of Encapsulation Flow Models in GOMA, Version 1.1

Mondy, L.A.; Rao, Rekha R.; Schunk, Randy; Sackinger, Philip A.; Adolf, Douglas B.; Rao, Rekha R.

Encapsulation is a common process used in manufacturing most non-nuclear components including: firing sets, neutron generators, trajectory sensing signal generators (TSSGs), arming, fusing and firing devices (AF and Fs), radars, programmers, connectors, and batteries. Encapsulation is used to contain high voltage, to mitigate stress and vibration and to protect against moisture. The purpose of the ASCI Encapsulation project is to develop a simulation capability that will allow us to aid in the encapsulation design process, especially for neutron generators. The introduction of an encapsulant poses many problems because of the need to balance ease of processing and properties necessary to achieve the design benefits such as tailored encapsulant properties, optimized cure schedule and reduced failure rates. Encapsulants can fail through fracture or delamination as a result of cure shrinkage, thermally induced residual stresses, voids or incomplete component embedding and particle gradients. Manufacturing design requirements include (1) maintaining uniform composition of particles in order to maintain the desired thermal coefficient of expansion (CTE) and density, (2) mitigating void formation during mold fill, (3) mitigating cure and thermally induced stresses during cure and cool down, and (4) eliminating delamination and fracture due to cure shrinkage/thermal strains. The first two require modeling of the fluid phase, and it is proposed to use the finite element code GOMA to accomplish this. The latter two require modeling of the solid state; however, ideally the effects of particle distribution would be included in the calculations, and thus initial conditions would be set from GOMA predictions. These models, once they are verified and validated, will be transitioned into the SIERRA framework and the ARIA code. This will facilitate exchange of data with the solid mechanics calculations in SIERRA/ADAGIO.

More Details

Massively parallel boundary integral element method modeling of particles in low-Reynolds number Newtonian fluid flows

Advances in High Performance Computing

Ingber, M.S.; Subia, S.R.; Mondy, L.A.

The analysis of many complex multiphase fluid flow systems is based on a scale decoupling procedure. At the macroscale, continuum models are used to perform large scale simulations. At the mesoscale, statistical homogenization theory is used to derive continuum models based on representative volume elements (RVEs). At the microscale, small scale features such as interfacial properties are analyzed to be incorporated into mesoscale simulations. In this research, mesoscopic simulations of hard particles suspended in a Newtonian fluid undergoing nonlinear shear flow are performed using a boundary element method. To obtain an RVE at higher concentrations, several hundred particles are included in the simulations putting considerable demands on the computational resources both in terms of CPU and memory. Parallel computing provides a viable platform to study these large multiphase systems. The implementation of a portable, parallel computer code based on the boundary element method using a block-block data distribution is discussed in this paper. The code employs updated direct-solver technologies that make use of dual-processor compute nodes.

More Details
Results 151–162 of 162
Results 151–162 of 162