Publications

Results 51–100 of 100
Skip to search filters

Experiments to populate and validate a processing model for polyurethane foam. BKC 44306 PMDI-10

Mondy, L.A.; Bauer, Stephen J.; Hileman, Michael B.; Thompson, Kyle R.; Rao, Rekha R.; Shelden, Bion S.; Soehnel, Melissa M.; O'Hern, Timothy J.; Grillet, Anne M.; Celina, Mathias C.; Wyatt, Nicholas B.; Russick, Edward M.

We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.

More Details

Exploring mediated reality to approximate X-ray attenuation coefficients from radiographs

Proceedings of SPIE - The International Society for Optical Engineering

Jimenez, Edward S.; Orr, Laurel J.; Morgan, Megan L.; Thompson, Kyle R.

Estimation of the x-ray attenuation properties of an object with respect to the energy emitted from the source is a challenging task for traditional Bremsstrahlung sources. This exploratory work attempts to estimate the x-ray attenuation profile for the energy range of a given Bremsstrahlung profile. Previous work has shown that calculating a single effective attenuation value for a polychromatic source is not accurate due to the non-linearities associated with the image formation process. Instead, we completely characterize the imaging system virtually and utilize an iterative search method/constrained optimization technique to approximate the attenuation profile of the object of interest. This work presents preliminary results from various approaches that were investigated. The early results illustrate the challenges associated with these techniques and the potential for obtaining an accurate estimate of the attenuation profile for objects composed of homogeneous materials.

More Details

Irregular large-scale computed tomography on multiple graphics processors improves energy-efficiency metrics for industrial applications

Proceedings of SPIE - The International Society for Optical Engineering

Jimenez, Edward S.; Goodman, Eric G.; Park, Ryeojin; Orr, Laurel J.; Thompson, Kyle R.

This paper will investigate energy-efficiency for various real-world industrial computed-tomography reconstruction algorithms, both CPU- and GPU-based implementations. This work shows that the energy required for a given reconstruction is based on performance and problem size. There are many ways to describe performance and energy efficiency, thus this work will investigate multiple metrics including performance-per-watt, energy-delay product, and energy consumption. This work found that irregular GPU-based approaches1 realized tremendous savings in energy consumption when compared to CPU implementations while also significantly improving the performanceper- watt and energy-delay product metrics. Additional energy savings and other metric improvement was realized on the GPU-based reconstructions by improving storage I/O by implementing a parallel MIMD-like modularization of the compute and I/O tasks.

More Details

A high-performance GPU-based forward-projection model for computed tomography applications

Proceedings of SPIE - The International Society for Optical Engineering

Perez, Ismael P.; Bauerle, Matthew; Jimenez, Edward S.; Thompson, Kyle R.

This work describes a high-performance approach to radiograph (i.e. X-ray image for this work) simulation for arbitrary objects. The generation of radiographs is more generally known as the forward projection imaging model. The formation of radiographs is very computationally expensive and is not typically approached for large-scale applications such as industrial radiography. The approach described in this work revolves around a single GPU-based implementation that performs the attenuation calculation in a massively parallel environment. Additionally, further performance gains are realized by exploiting the GPU-specific hardware. Early results show that using a single GPU can increase computational performance by three orders-of- magnitude for volumes of 10003 voxels and images with 10002 pixels.

More Details

High performance graphics processor based computed tomography reconstruction algorithms for nuclear and other large scale applications

Jimenez, Edward S.; Orr, Laurel J.; Thompson, Kyle R.

The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computed simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.

More Details

Characterization of X-ray generator beam profiles

Mitchell, Dean J.; Thompson, Kyle R.; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa A.; Parmeter, John E.

T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

More Details

Exploring diagnostic capabilities for application to new photovoltaic technologies

Quintana, Enrico C.; Quintana, Michael A.; Rolfe, Kevin D.; Thompson, Kyle R.

Explosive growth in photovoltaic markets has fueled new creative approaches that promise to cut costs and improve reliability of system components. However, market demands require rapid development of these new and innovative technologies in order to compete with more established products and capture market share. Often times diagnostics that assist in R&D do not exist or have not been applied due to the innovative nature of the proposed products. Some diagnostics such as IR imaging, electroluminescence, light IV, dark IV, x-rays, and ultrasound have been employed in the past and continue to serve in development of new products, however, innovative products with new materials, unique geometries, and previously unused manufacturing processes require additional or improved test capabilities. This fast-track product development cycle requires diagnostic capabilities to provide the information that confirms the integrity of manufacturing techniques and provides the feedback that can spawn confidence in process control, reliability and performance. This paper explores the use of digital radiography and computed tomography (CT) with other diagnostics to support photovoltaic R&D and manufacturing applications.

More Details

Experiments for foam model development and validation

Mondy, L.A.; Gorby, Allen D.; Cote, Raymond O.; Castaneda, Jaime N.; Thompson, Kyle R.; Rao, Rekha R.; Moffat, Harry K.; Kraynik, Andrew M.; Russick, Edward M.; Adolf, Douglas B.; Grillet, Anne M.; Brotherton, Christopher M.; Bourdon, Christopher B.

A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

More Details

Liquefaction and flow behavior of a thermally decomposing removable epoxy foam

High Performance Structures and Materials

Erickson, Kenneth L.; Trujillo, Steven M.; Thompson, Kyle R.; Sun, Amy C.; Hobbs, Michael L.; Dowding, Kevin J.

The investigation of the liquefaction and flow behavior of a thermally decomposing removable epoxy foam (REF) was discussed. It was concluded that the behavior of REF, can vary greatly depending on both physical and thermal boundary conditions as well as on decomposition chemistry. It was shown that the foam regression away from a heated surface generally involves two moving boundaries, a fluid-solid interface and a fluid-vapor interface. During thermal decomposition, the physical and chemical behaviors of the foams were coupled and can significantly affect heat transfer rates to the encapsulated units.

More Details

CPUF - a chemical-structure-based polyurethane foam decomposition and foam response model

Hobbs, Michael L.; Hobbs, Michael L.; Erickson, Kenneth L.; Chu, Tze Y.; Borek, Theodore T.; Thompson, Kyle R.; Dowding, Kevin J.

A Chemical-structure-based PolyUrethane Foam (CPUF) decomposition model has been developed to predict the fire-induced response of rigid, closed-cell polyurethane foam-filled systems. The model, developed for the B-61 and W-80 fireset foam, is based on a cascade of bondbreaking reactions that produce CO2. Percolation theory is used to dynamically quantify polymer fragment populations of the thermally degrading foam. The partition between condensed-phase polymer fragments and gas-phase polymer fragments (i.e. vapor-liquid split) was determined using a vapor-liquid equilibrium model. The CPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE and CALORE, which support chemical kinetics and enclosure radiation. Elements were removed from the computational domain when the calculated solid mass fractions within the individual finite element decrease below a set criterion. Element removal, referred to as ?element death,? creates a radiation enclosure (assumed to be non-participating) as well as a decomposition front, which separates the condensed-phase encapsulant from the gas-filled enclosure. All of the chemistry parameters as well as thermophysical properties for the CPUF model were obtained from small-scale laboratory experiments. The CPUF model was evaluated by comparing predictions to measurements. The validation experiments included several thermogravimetric experiments at pressures ranging from ambient pressure to 30 bars. Larger, component-scale experiments were also used to validate the foam response model. The effects of heat flux, bulk density, orientation, embedded components, confinement and pressure were measured and compared to model predictions. Uncertainties in the model results were evaluated using a mean value approach. The measured mass loss in the TGA experiments and the measured location of the decomposition front were within the 95% prediction limit determined using the CPUF model for all of the experiments where the decomposition gases were vented sufficiently. The CPUF model results were not as good for the partially confined radiant heat experiments where the vent area was regulated to maintain pressure. Liquefaction and flow effects, which are not considered in the CPUF model, become important when the decomposition gases are confined.

More Details

Spatial Gradients in Particle Reinforced Polymers Characterized by X-Ray Attenuation and Laser Confocal Microscopy

Journal of Materials Research

Lagasse, Robert R.; Thompson, Kyle R.

The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diameter of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.

More Details
Results 51–100 of 100
Results 51–100 of 100