Silicon Anode Gas Generation Questions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
As lithium-ion battery technologies mature, the size and energy of these systems continues to increase (> 50 kWh for EVs); making safety and reliability of these high energy systems increasingly important. While most material advances for lithium-ion chemistries are directed toward improving cell performance (capacity, energy, cycle life, etc.), there are a variety of materials advancements that can be made to improve lithium-ion battery safety. Issues including energetic thermal runaway, electrolyte decomposition and flammability, anode SEI stability, and cell-level abuse tolerance continue to be critical safety concerns. This report highlights work with our collaborators to develop advanced materials to improve lithium-ion battery safety and abuse tolerance and to perform cell-level characterization of new materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In this paper we will discuss our preliminary thermal and electrochemical data aimed at developing a robust nonflammable Li-CFx cell capable of wide temperature operation. To accomplish this goal, we are evaluating a thermally stable solvent comprised of an anion binding agent (ABA) and lithium fluoride (LiF), typically at a 1:1 molar ratio. In conventional carbonate based electrolytes, ABA is soluble while LiF remains insoluble. However, the neutral ABA solubilizes LiF and forms a salt complex represented as Li+(ABAF-). We are exploiting this unique feature and apply this strategy to CFx chemistry to improve cell performance, due to the CFx cell chemistry generating LiF as discharge product. Continuous solvation of the salt mixture during discharge allows for utilization of electrolytes initially containing sub stoichiometric amount of LiF. The practical benefits are reduced cell weight, mitigation of electrode fouling, and consequently better low temperature performance. Electrolytes containing dimethyl methyl phosphonate (DMMP), 1M tris(pentafluorophenyl) borane (TPFB) and varying concentrations of LiF (1M; 0.5M and 0.1M) were prepared and characterized for ionic conductivity and voltage stability. In general, ionic conductivity decreases with decreasing LiF concentration. The room temperature conductivity for the DMMP 1M TPFB:1M LiF is ~ 9mS/cm and ~3mS/cm for the 1M TPFB:0.1M LiF. Unlike the conductivity, the electrochemical voltage stability did not vary substantially with LiF concentration and the electrolytes showed a stable voltage window in the range 0-3.5V vs. Li+/Li, which is substantially wider than the Li-CFx cell voltage. Flammability measurement performed at our thermal abuse facility demonstrated that the electrolyte was nonflammable. Discharge performance of CFx materials obtained from several vendors was evaluated in 2032 coin cells at room temperature. Experimental results demonstrate a reduction in ohmic resistance and interfacial resistance during discharge for a cell containing lower concentrations of added LiF compared to ABA. These observations are a direct demonstration that the unbound ABA in the electrolyte dissolves the LiF generated in the discharge reaction.
This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte-interphase layer, and this cross-over can be modeled and predicted.
Journal of the Electrochemical Society
Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries.We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor is sufficiently electrophilic that organic solvent molecules compete with F- for boron-site binding, and specific solvent effects must be considered when predicting its F- affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F- and organic solvent molecules. After accounting for specific solvent effects, however, its net F- affinity is about the same as the simple oxalate-based anion receptor. Finally, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F- ions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.