Publications

Results 76–100 of 230 for kuhlman
Skip to search filters

Project Plan: Salt in Situ Heater Test

Kuhlman, Kristopher L.; Mills, Melissa M.; Herrick, Courtney G.; Matteo, Edward N.; Stuaffer, Phil S.; Johnson, Peter J.; Boukhalfa, Hakim B.; Weaver, Doug W.; Rutqvist, Jonny R.; Wu, Yuxin W.

This project plan gives a high-level description of the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Disposition (SFWD) campaign in situ borehole heater test project being planned for the Waste Isolation Pilot Plant (WIPP) site This plan provides an overview of the schedule and responsibilities of the parties involved. This project is a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to execute a series of small-diameter borehole heater tests in salt for the DOE-NE SFWD campaign. Design of a heater test in salt at WIPP has evolved over several years. The current design was completed in fiscal year 2017 (FY17), an equipment shakedown experiment is underway in April FY18, and the test implementation will begin in summer of FY18. The project comprises a suite of modular tests, which consist of a group of nearby boreholes in the wall of drifts at WIPP. Each test is centered around a packer-isolated heated borehole (5" diameter) containing equipment for water-vapor collection and brine sampling, surrounded by smaller-diameter (2" diameter) satellite observation boreholes. Observation boreholes will contain temperature sensors, tracer release points, electrical resistivity tomography (ERT) sensors, fiber optic sensing, and acoustic emission (AE) measurements, and sonic velocity sources and sensors. These satellite boreholes will also be used for plugging/sealing tests. The first two tests to be implemented will have the packer-isolated borehole heated to 120°C, with one observation borehole used to monitor changes. Follow-on tests will be designed using information gathered from the first two tests, will be conducted at other temperatures, will use multiple observation boreholes, and may include other measurement types and test designs.

More Details

Strategic Petroleum Reserve Cemented Annulus Modeling and Testing; FY16 Progress

Nemer, Martin N.; Kuhlman, Kristopher L.; Newell, Pania N.; Bettin, Giorgia B.

Sandia National Laboratories has begun developing modeling and analysis tools of flow through the cemented port ion of a cemented annulus in a Strategic Petroleum Reserve (SPR) well since August of 201 5 . The goal of this work is to develop model s and testing procedures to diagnose the health of cemented annuli at SPR sites. In Fiscal Year 2016 (FY16), we have developed several tests and associated models that we believe are sufficient for this purpose. This report outlines progress made in FY16 and future work.

More Details

Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

Heath, Jason; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, W.P.

This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

More Details

Field-scale Thermal Testing in a Generic Salt Disposal Environment Underground Research Laboratory (URL): Delineation of Principal Purpose Objectives and Hypotheses

Sassani, David C.; Hardin, Ernest H.; Kuhlman, Kristopher L.; MacKinnon, R.J.

The amount of brine present in domal salt formation is far less than in bedded salts (e.g., 0.01 to 0.1% compared with 1 to 3%). In salt domes, shear deformation associated with diapirism has caused existing brine to coalesce, leading to flow and expulsion. Brine migration behavior was investigated in bedded salt at WIPP (Nowak and McTigue 1987, SAND87-0880), and in domal salt at Asse (Coyle et al. 1987, BMI/ONWI-624). Test methods were not standardized, and the tests involved large diameter boreholes (17 to 36 in. diameter) and large apparatus. The tested intervals were proximal to mined openings (within approximately 1 diameter) where in situ stresses are redistributed due to excavation. The tests showed that (1) brine inflow rates can range over at least 2 orders of magnitude for domal vs. bedded salt, (2) that brine inflow is strongly associated with clay and interbedded permeable layers in bedded salt, and (3) that measurement systems can readily collect very small quantities of moisture over time frames of 2 years or longer. Brine inflow rates declined slightly with time in both test series, but neither series approached a state of apparent depletion. This range of flow magnitude could be significant to repository design and performance assessment, especially if inflow rates can be predicted using stratigraphic and geomechanical inputs, and can be shown to approach zero in a predictable manner.

More Details

DECOVALEX 2023 Task D -- Interim Report from SNL

Jove Colon, Carlos F.; Lopez, Carlos M.; Kuhlman, Kristopher L.

The capability of a 1-D PFLOTRAN model to simulate the S1-3 bentonite saturation experiment has been demonstrated and validated against experimental data. Work remains to be done to refine 1-D PFLOTRAN simulations of the experiment S1-4 which include evaluation of parameter sensitivities on the prediction of material saturation and relative permeabilities. This and further testing of PFLOTRAN capabilities will be done as part of DECOVALEX 2023 Task D contributions by the SNL team in the coming months.

More Details

Deep Borehole Laboratory and Borehole Testing Strategy: Generic Drilling and Testing Plan

Kuhlman, Kristopher L.; Hardin, Ernest H.; Rigali, Mark J.

This report presents a generic (i.e., site-independent) preliminary plan for drilling, testing, sampling, and analyzing data for a deep characterization borehole drilled into crystalline basement for the purposes of assessing the suitability of a site for deep borehole disposal (DBD). This research was performed as part of the deep borehole field test (DBFT). Based on revised U.S. Department of Energy (DOE) priorities in mid-2017, the DBFT and other research related to a DBD option was discontinued; ongoing work and documentation were closed out by the end of fiscal year (FY) 2017. This report was initiated as part of the DBFT and documented as an incomplete draft at the end of FY 2017. The report was finalized by Sandia National Laboratories in FY2018 without DOE funding, subsequent to the termination of the DBFT, and published in FY2019. This report presents a possible sampling, testing, and analysis campaign that could be carried out as part of a future project to quantify geochemical, geomechanical, geothermal, and geohydrologic conditions encountered at depths up to 5 km in crystalline basement.

More Details

Modeling Dynamic Helium Release as a Tracer of Rock Deformation

Journal of Geophysical Research: Solid Earth

Gardner, W.P.; Bauer, Stephen J.; Kuhlman, Kristopher L.; Heath, Jason

We use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We find that the helium signal is sensitive to fracture development and evolution as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. Our model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.

More Details
Results 76–100 of 230 for kuhlman
Results 76–100 of 230 for kuhlman