Publications

Results 351–375 of 527
Skip to search filters

Electron beam effects during in-situ annealing of self-ion irradiated nanocrystalline nickel

Materials Research Society Symposium Proceedings

Muntifering, Brittany; Dingreville, Rémi; Hattar, Khalid M.; Qu, Jianmin

Transmission electron microscopy (TEM) is a valuable methodology for investigating radiation-induced microstructural changes and elucidating the underlying mechanisms involved in the aging and degradation of nuclear reactor materials. However, the use of electrons for imaging may result in several inadvertent effects that can potentially change the microstructure and mechanisms active in the material being investigated. In this study, in situ TEM characterization is performed on nanocrystalline nickel samples under self-ion irradiation and post irradiation annealing. During annealing, voids are formed around 200 °C only in the area illuminated by the electron beam. Based on diffraction patterns analyses, it is hypothesized that the electron beam enhanced the growth of a NiO layer resulting in a decrease of vacancy mobility during annealing. The electron beam used to investigate self-ion irradiation ultimately significantly affected the type of defects formed and the final defect microstructure.

More Details

Physical response of gold nanoparticles to single self-ion bombardment

Journal of Materials Research

Bufford, Daniel C.; Hattar, Khalid M.

The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (∼1 nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. Similar shape changes were observed in the 20 nm NPs, while the 5 nm NPs were transiently melted or explosively broken apart.

More Details

In Situ Electron Microscopy of Helium Bubble Implantation in Metal Hydrides

Hattar, Khalid M.; Bufford, Daniel C.; Robinson, David R.; Snow, Clark S.

Here we investigated the microstructural response of various Pd physically vapor deposited films and Er and ErD2 samples prepared from neutron Tube targets to implanted He via in situ ion irradiation transmission electron microscopy and subsequent in situ annealing experiments. Small bubbles formed in both systems during implantation, but did not grow with increasing fluence or a short duration room temperature aging (weeks). Annealing produced large cavities with different densities in the two systems. The ErD2 showed increased cavity nucleation compared to Er. The spherical bubbles formed from high fluence implantation and rapid annealing in both Er and ErD2 cases differed from microstructures of naturally aged tritiated samples. Further work is still underway to determine the transition in bubble shape in the Er samples, as well as the mechanism for evolution in Pd films.

More Details
Results 351–375 of 527
Results 351–375 of 527