Publications

Results 151–200 of 235
Skip to search filters

UQTk version 2.0 user manual

Debusschere, Bert D.; Sargsyan, Khachik S.; Safta, Cosmin S.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 2.0 ffers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

Multiparameter spectral representation of noise-induced competence in bacillus subtilis

IEEE/ACM Transactions on Computational Biology and Bioinformatics

Sargsyan, Khachik S.; Safta, Cosmin S.; Debusschere, Bert D.; Najm, H.N.

In this work, the problem of representing a stochastic forward model output with respect to a large number of input parameters is considered. The methodology is applied to a stochastic reaction network of competence dynamics in Bacillus subtilis bacterium. In particular, the dependence of the competence state on rate constants of underlying reactions is investigated. We base our methodology on Polynomial Chaos (PC) spectral expansions that allow effective propagation of input parameter uncertainties to outputs of interest. Given a number of forward model training runs at sampled input parameter values, the PC modes are estimated using a Bayesian framework. As an outcome, these PC modes are described with posterior probability distributions. The resulting expansion can be regarded as an uncertain response function and can further be used as a computationally inexpensive surrogate instead of the original reaction model for subsequent analyses such as calibration or optimization studies. Furthermore, the methodology is enhanced with a classification-based mixture PC formulation that overcomes the difficulties associated with representing potentially nonsmooth input-output relationships. Finally, the global sensitivity analysis based on the multiparameter spectral representation of an observable of interest provides biological insight and reveals the most important reactions and their couplings for the competence dynamics. © 2013 IEEE.

More Details
Results 151–200 of 235
Results 151–200 of 235