Publications

Results 226–235 of 235
Skip to search filters

Bayesian methods for discontinuity detection in climate model predictions

Safta, Cosmin S.; Debusschere, Bert D.; Najm, H.N.; Sargsyan, Khachik S.

Discontinuity detection is an important component in many fields: Image recognition, Digital signal processing, and Climate change research. Current methods shortcomings are: Restricted to one- or two-dimensional setting, Require uniformly spaced and/or dense input data, and Give deterministic answers without quantifying the uncertainty. Spectral methods for Uncertainty Quantification with global, smooth bases are challenged by discontinuities in model simulation results. Domain decomposition reduces the impact of nonlinearities and discontinuities. However, while gaining more smoothness in each subdomain, the current domain refinement methods require prohibitively many simulations. Therefore, detecting discontinuities up front and refining accordingly provides huge improvement to the current methodologies.

More Details

Quantifying prediction fidelity in multiscale multiphysics simulations

Adalsteinsson, Helgi A.; Debusschere, Bert D.; Najm, H.N.; Jones, Reese E.; Sargsyan, Khachik S.

Multiscale multiphysics problems arise in a host of application areas of significant relevance to DOE, including electrical storage systems (membranes and electrodes in fuel cells, batteries, and ultracapacitors), water surety, chemical analysis and detection systems, and surface catalysis. Multiscale methods aim to provide detailed physical insight into these complex systems by incorporating coupled effects of relevant phenomena on all scales. However, many sources of uncertainty and modeling inaccuracies hamper the predictive fidelity of multiscale multiphysics simulations. These include parametric and model uncertainties in the models on all scales, and errors associated with coupling, or information transfer, across scales/physics. This presentation introduces our work on the development of uncertainty quantification methods for spatially decomposed atomistic-to-continuum (A2C) multiscale simulations. The key thrusts of this research effort are: inference of uncertain parameters or observables from experimental or simulation data; propagation of uncertainty through particle models; propagation of uncertainty through continuum models; propagation of information and uncertainty across model/scale interfaces; and numerical and computational analysis and control. To enable the bidirectional coupling between the atomistic and continuum simulations, a general formulation has been developed for the characterization of sampling noise due to intrinsic variability in particle simulations, and for the propagation of both this sampling noise and parametric uncertainties through coupled A2C multiscale simulations. Simplified tests of noise quantification in particle computations are conducted through Bayesian inference of diffusion rates in an idealized isothermal binary material system. A proof of concept is finally presented based on application of the present formulation to the propagation of uncertainties in a model plane Couette flow, where the near wall region is handled with molecular dynamics while the bulk region is handled with continuum methods.

More Details

Uncertainty quantification in the presence of limited climate model data with discontinuities

Sargsyan, Khachik S.; Safta, Cosmin S.; Debusschere, Bert D.; Najm, H.N.

Uncertainty quantification in climate models is challenged by the sparsity of the available climate data due to the high computational cost of the model runs. Another feature that prevents classical uncertainty analyses from being easily applicable is the bifurcative behavior in the climate data with respect to certain parameters. A typical example is the Meridional Overturning Circulation in the Atlantic Ocean. The maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO2 forcing. We develop a methodology that performs uncertainty quantification in this context in the presence of limited data.

More Details

Predictability and reduced order modeling in stochastic reaction networks

Sargsyan, Khachik S.; Debusschere, Bert D.; Najm, H.N.

Many systems involving chemical reactions between small numbers of molecules exhibit inherent stochastic variability. Such stochastic reaction networks are at the heart of processes such as gene transcription, cell signaling or surface catalytic reactions, which are critical to bioenergy, biomedical, and electrical storage applications. The underlying molecular reactions are commonly modeled with chemical master equations (CMEs), representing jump Markov processes, or stochastic differential equations (SDEs), rather than ordinary differential equations (ODEs). As such reaction networks are often inferred from noisy experimental data, it is not uncommon to encounter large parametric uncertainties in these systems. Further, a wide range of time scales introduces the need for reduced order representations. Despite the availability of mature tools for uncertainty/sensitivity analysis and reduced order modeling in deterministic systems, there is a lack of robust algorithms for such analyses in stochastic systems. In this talk, we present advances in algorithms for predictability and reduced order representations for stochastic reaction networks and apply them to bistable systems of biochemical interest. To study the predictability of a stochastic reaction network in the presence of both parametric uncertainty and intrinsic variability, an algorithm was developed to represent the system state with a spectral polynomial chaos (PC) expansion in the stochastic space representing parametric uncertainty and intrinsic variability. Rather than relying on a non-intrusive collocation-based Galerkin projection [1], this PC expansion is obtained using Bayesian inference, which is ideally suited to handle noisy systems through its probabilistic formulation. To accommodate state variables with multimodal distributions, an adaptive multiresolution representation is used [2]. As the PC expansion directly relates the state variables to the uncertain parameters, the formulation lends itself readily to sensitivity analysis. Reduced order modeling in the time dimension is accomplished using a Karhunen-Loeve (KL) decomposition of the stochastic process in terms of the eigenmodes of its covariance matrix. Subsequently, a Rosenblatt transformation relates the random variables in the KL decomposition to a set of independent random variables, allowing the representation of the system state with a PC expansion in those independent random variables. An adaptive clustering method is used to handle multimodal distributions efficiently, and is well suited for high-dimensional spaces. The spectral representation of the stochastic reaction networks makes these systems more amenable to analysis, enabling a detailed understanding of their functionality, and robustness under experimental data uncertainty and inherent variability.

More Details
Results 226–235 of 235
Results 226–235 of 235