Development of an Analytical Bond Order Potential for C-H-Cu Systems
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review B.
Abstract not provided.
Proposed for publication in J. Phys. Cond. Matter.
Abstract not provided.
Proposed for publication in Physical Review B.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review B.
Abstract not provided.
Proposed for publication in Journal of Physical Chemistry C.
Abstract not provided.
Abstract not provided.
This report summarizes the accomplishments of a Laboratory-Directed Research and Development (LDRD) project focused on developing and applying new x-ray spectroscopies to understand and improve electric charge transfer in electrochemical devices. Our approach studies the device materials as they function at elevated temperature and in the presence of sufficient gas to generate meaningful currents through the device. We developed hardware and methods to allow x-ray photoelectron spectroscopy to be applied under these conditions. We then showed that the approach can measure the local electric potentials of the materials, identify the chemical nature of the electrochemical intermediate reaction species and determine the chemical state of the active materials. When performed simultaneous to traditional impedance-based analysis, the approach provides an unprecedented characterization of an operating electrochemical system.
Nature Materials
Abstract not provided.
Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Physical Chemistry Chemical Physics
Abstract not provided.
Abstract not provided.
Physical Chemistry Chemical Physics
We use photo-electrons as a non-contact probe to measure local electrical potentials in a solid-oxide electrochemical cell. We characterize the cell in operando at near-ambient pressure using spatially-resolved X-ray photoemission spectroscopy. The overpotentials at the interfaces between the Ni and Pt electrodes and the yttria-stabilized zirconia (YSZ) electrolyte are directly measured. The method is validated using electrochemical impedance spectroscopy. Using the overpotentials, which characterize the cell’s inefficiencies, we compare without ambiguity the electro-catalytic efficiencies of Ni and Pt, finding that on Ni H2O splitting proceeds more rapidly than H2 oxidation, while on Pt, H2 oxidation proceeds more rapidly than H2O splitting. © the Owner Societies.
ECS Transactions
Single chamber electrochemical cells were fabricated by patterning working and counter electrodes of Ni and Pt on single-crystal Y2O 3-stabilized ZrO2. Cells were characterized in mixed atmospheres of H2 and H2O at ratios of 1:1 and 1:20 at nominally 923 K and 67 Pa total pressure. Potential sweep and impedance measurements were conducted simultaneously with ambient-pressure x-ray photoelectron spectroscopy (APXPS), which is a unique synchrotron-based probe designed for in-situ chemical characterization of surfaces using photoemission at gas pressures large enough to achieve realistic densities of faradic current. Electrochemically induced oxidation of Ni was observed under anodic polarization and could be reversed by applying a cathodic bias. The thin-film microstructure could also be manipulated electrochemically in that pores exposing underlying electrolyte would open through the Ni film after polarization. Application of APXPS to resolve fundamental details of high-temperature electrochemical process in-situ is discussed. ©The Electrochemical Society.
New Journal of Physics
We study how single-crystal chromium films of uniform thickness on W(110) substrates are converted to arrays of three-dimensional (3D) Cr islands during annealing. We use low-energy electron microscopy (LEEM) to directly observe a kinetic pathway that produces trenches that expose the wetting layer. Adjacent film steps move simultaneously uphill and downhill relative to the staircase of atomic steps on the substrate. This step motion thickens the film regions where steps advance. Where film steps retract, the film thins, eventually exposing the stable wetting layer. Since our analysis shows that thick Cr films have a lattice constant close to bulk Cr, we propose that surface and interface stress provide a possible driving force for the observed morphological instability. Atomistic simulations and analytic elastic models show that surface and interface stress can cause a dependence of film energy on thickness that leads to an instability to simultaneous thinning and thickening. We observe that de-wetting is also initiated at bunches of substrate steps in two other systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are converted into patterns of unidirectional stripes as the trenches that expose the wetting layer lengthen along the W[001] direction. Finally, we observe how 3D Cr islands. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Nano-structured palladium is examined as a tritium storage material with the potential to release beta-decay-generated helium at the generation rate, thereby mitigating the aging effects produced by enlarging He bubbles. Helium retention in proposed structures is modeled by adapting the Sandia Bubble Evolution model to nano-dimensional material. The model shows that even with ligament dimensions of 6-12 nm, elevated temperatures will be required for low He retention. Two nanomaterial synthesis pathways were explored: de-alloying and surfactant templating. For de-alloying, PdAg alloys with piranha etchants appeared likely to generate the desired morphology with some additional development effort. Nano-structured 50 nm Pd particles with 2-3 nm pores were successfully produced by surfactant templating using PdCl salts and an oligo(ethylene oxide) hexadecyl ether surfactant. Tests were performed on this material to investigate processes for removing residual pore fluids and to examine the thermal stability of pores. A tritium manifold was fabricated to measure the early He release behavior of this and Pd black material and is installed in the Tritium Science Station glove box at LLNL. Pressure-composition isotherms and particle sizes of a commercial Pd black were measured.
Abstract not provided.
New Journal of Physics
Abstract not provided.
Physical Review Letters
Abstract not provided.
Abstract not provided.
Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.
Proposed for publication in Surface Science.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review B.
We observe the spontaneous formation of parallel oxide rods upon exposing a clean NiAl(110) surface to oxygen at elevated temperatures (850-1350 K). By following the self-assembly of individual nanorods in real time with low-energy electron microscopy (LEEM), we are able to investigate the processes by which the rods lengthen along their axes and thicken normal to the surface of the substrate. At a fixed temperature and O{sub 2} pressure, the rods lengthen along their axes at a constant rate. The exponential temperature dependence of this rate yields an activation energy for growth of 1.2 {+-} 0.1 eV. The rod growth rates do not change as their ends pass in close proximity (<40 nm) to each other, which suggests that they do not compete for diffusing flux in order to elongate. Both LEEM and scanning tunneling microscopy (STM) studies show that the rods can grow vertically in layer-by-layer fashion. The heights of the rods are extremely bias dependent in STM images, but occur in integer multiples of approximately 2-{angstrom}-thick oxygen-cation layers. As the rods elongate from one substrate terrace to the next, we commonly see sharp changes in their rates of elongation that result from their tendency to gain (lose) atomic layers as they descend (climb) substrate steps. Diffraction analysis and dark-field imaging with LEEM indicate that the rods are crystalline, with a lattice constant that is well matched to that of the substrate along their length. We discuss the factors that lead to the formation of these highly anisotropic structures.
Proposed for publication in Surface Science.
Abstract not provided.