Modeling and Simulation of Residual Stress Development in a Resistance Forge Weld
Abstract not provided.
Abstract not provided.
Residual stresses induced during forging and welding can cause detrimental failure in reservoirs due to enhanced possibility of crack propagation. Therefore, reservoirs must be designed with yield strengths in a tight range. This report summarizes an effort to verify and validate a computa- tional tool that was developed to aid in prediction of the evolution of residual stresses throughout the manufacturing process. The application requirements are identified and summarized in the context of the Predictive Capability Maturity Model (PCMM). The phenomena of interest that the model attempts to capture are discussed and prioritized using the Phenomena Identification and Ranking Table (PIRT) to identify any gaps in our approach. The fidelity of the modeling approach is outlined and details on the implementation and boundary conditions are provided. The code verification requirements are discussed and solution verification is performed, including a mesh convergence study on the series of modeling steps (forging, machining and welding). Validation activities are summarized, including validation of the displacements, residual stresses, recrystal- lization, yield strength and thermal history. A sensitivity analysis and uncertainty quantification are also performed to understand how variations in the manufacturing process affect the residual stresses.