Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
Constitutive model parameterizations for the General Plastics EF4003 low density 3 pound per cubic foot are needed for design and qualification purposes in normal and abnormal mechanical simulations. The material is expected to be deformed in two ways: first during preloading, and second under impact conditions of the system (transient dynamic). All analyses are to be performed at room temperature. The goal is to provide the analysis community a robust constitutive model parameterization to represent the compression behavior of the EF4003 foam from small deformations up to massive compressive deformations when the foam is densifying. It is worth noting the EF4003 exhibits anisotropy in its stress-strain behavior between the rise and transverse directions (See figure 2.8c-d) as well as plateau behavior that is very likely to cause material stability issues, due to the buckling transition, (and has historically done so) when using Sandia’s current workhorse models for flexible foams, Hyperfoam and Flex Foam. A Stability-informed Hyperfoam parameterization procedure is developed and executed to calibrate a hyperfoam model for the EF4003 room temperature, transversely loaded data. A rise orientation parameterization was not attempted due to localization in the experiments.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
Luo, Chaoqian; Chung, Christopher; Yakacki, Christopher M.; Long, Kevin N.; Yu, Kai
Liquid crystal elastomers (LCEs) exhibit soft elasticity due to the alignment and reorientation of mesogens upon mechanical loading, which provides additional mechanisms to absorb and dissipate energy. This enhanced response makes LCEs potentially transformative materials for biomedical devices, tissue replacements, and protective equipment. However, there is a critical knowledge gap in understanding the highly rate-dependent dissipative behaviors of LCEs due to the lack of real-time characterization techniques that probe the microscale network structure and link it to the mechanical deformation of LCEs. In this work, we employ in situ optical measurements to evaluate the alignment and reorientation degree of mesogens in LCEs. The data are correlated to the quantitative physical analysis using polarized Fourier-transform infrared spectroscopy. The time scale of mesogen alignment is determined at different strain levels and loading rates. The mesogen reorientation kinetics is characterized to establish its relationship with the macroscale tensile strain, and compared to theoretical predictions. Overall, this work provides the first detailed study on the time-dependent evolution of mesogen alignment and reorientation in deformed LCEs. It also provides an effective and more accessible approach for other researchers to investigate the structural-property relationships of different types of polymers.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.
This SAND report fulfills the completion requirements for the ASC Physics and Engineering Modeling Level 2 Milestone 7836 during Fiscal Year 2021. The Sandia Simplified potential energy clock (SPEC) non-linear viscoelastic constitutive model was developed to predict a whole host of polymer glass physical behaviors in order to provide a tool to assess the effects of stress on these materials over their lifecycle. Polymer glasses are used extensively in applications such as electronics packaging, where encapsulants and adhesives can be critical to device performance. In this work, the focus is on assessing the performance of the model in predicting material evolution associated with long-term physical aging, an area that the model has not been fully vetted in. These predictions are key to utilizing models to help demonstrate electronics packaging component reliability over decades long service lives, a task that is very costly and time consuming to execute experimentally. The initiating hypothesis for the work was that a model calibration process can be defined that enables confidence in physical aging predictions under ND relevant environments and timescales without sacrificing other predictive capabilities. To test the hypothesis, an extensive suite of calibration and aging data was assembled from a combination of prior work and collaborating projects (Aging and Lifetimes as well as the DoD Joint Munitions Program) for two mission relevant epoxy encapsulants, 828DGEBA/DEA and 828DGEBA/T403. Multiple model calibration processes were developed and evaluated against the entire set of data for each material. A qualitative assessment of each calibration's ability to predict the wide range of aging responses was key to ranking the calibrations against each other. During this evaluation, predictions that were identified as non-physical, i.e., demonstrated something that was qualitatively different than known material behavior, were heavily weighted against the calibration performance. Thus, unphysical predictions for one aspect of aging response could generate a lower overall rating for a calibration process even if that process generated better quantitative predictions for another aspect of aging response. This insurance that all predictions are qualitatively correct is important to the overall aim of utilizing the model to predict residual stress evolution, which will depend on the interplay amongst the different material aging responses. The DSC-focused calibration procedure generated the best all-around aging predictions for both materials, demonstrating material models that can qualitatively predict the whole host of different physical aging responses that have been measured. This step forward in predictive capability comes from an unanticipated source, utilization of calorimetry measurements to specify model parameters. The DSC-focused calibration technique performed better than compression-focused techniques that more heavily weigh measurements more closely related to the structural responses to be predicted. Indeed, the DSC-focused calibration procedure was only possible due to recent incorporation of the enthalpy and heat capacity features into SPEC that was newly verified during this L2 milestone. Fundamentally similar aspects of the two material model calibrations as well as parametric studies to assess sensitives of the aging predictions are discussed within the report. A perspective on the next steps to the overall goal of residual stress evolution predictions under stockpile conditions closes the report.
We have characterized the three-dimensional evolution of microstructural anisotropy of a family of elastomeric foams during uniaxial compression via in-situ X-ray computed tomography. Flexible polyurethane foam specimens with densities of 136, 160 and 240 kg/m3 were compressed in uniaxial stress tests both parallel and perpendicular to the foam rise direction, to engineering strains exceeding 70%. The uncompressed microstructures show slightly elongated ellipsoidal pores, with elongation aligned parallel to the foam rise direction. The evolution of this microstructural anisotropy during deformation is quantified based on the autocorrelation of the image intensity, and verified via the mean intercept length as well as the shape of individual pores. Trends are consistent across all three methods. In the rise direction, the material remains transversely anisotropic throughout compression. Anisotropy initially decreases with compression, reaches a minimum, then increases up to large strains, followed by a small decrease in anisotropy at the largest strains as pores collapse. Compression perpendicular to the foam rise direction induces secondary anisotropy with respect to the compression axis, in addition to primary anisotropy associated with the foam rise direction. In contrast to compression in the rise direction, primary anisotropy initially increases with compression, and shows a slight decrease at large strains. These surprising non-monotonic trends and qualitative differences in rise and transverse loading are explained based on the compression of initially ellipsoidal pores. Microstructural anisotropy trends reflect macroscopic stress-strain and lateral strain response. These findings provide novel quantitative connections between three-dimensional microstructure and anisotropy in moderate density polymer foams up to large deformation, with important implications for understanding complex three-dimensional states of deformation.
Mechanical impact protection is an important consideration in many applications, ranging from product transportation to sports. Cellular materials are typically used due to their desirable energy absorption properties and light weight. However, their large deformation and rate dependent responses (especially of polymer foams) are challenging to consider in design. Additionally, the use of foams with uniform properties, such as uniform density and uniform stiffness, often restricts the designed foams to only be suitable for a narrow range of mechanical impact conditions whereas real applications commonly face unpredictable situations. 3D printing offers fabrication flexibility and thus opens the door to create foams with tailored properties. In this work, we investigate the feasibility of using 3D printing for functionally graded foams (FGFs) that are optimal over a broad range of mechanical environments. The foams are fabricated by the recently developed grayscale digital light processing (g-DLP) method which can print parts with locally designed properties. These foams are tested under drop test conditions and with slower displacement control. We also model the large deformation behavior of FGFs using finite element analysis in which we account for the different viscoelastic behaviors of the distinct grayscale regions. We then use the model to examine the impact mitigation capabilities of FGFs in different loading scenarios. Finally, we show how FGFs can be used to satisfy real-world design goals using the case study of a motorcycle helmet. In contrast to prior work, we investigate continuous, functionally graded foams of a single density that differ in their viscoelastic responses. This work provides further insight into the benefits of viscoelastic properties and modulus graded foams and presents a manufacturing approach that can be used to produce the next generation of flexible lattice foams as mechanical absorbers.
Luo, Chaoqian; Chung, Christopher; Traugutt, Nicholas A.; Yakacki, Christopher M.; Long, Kevin N.; Yu, Kai
Polymer foams are an essential class of lightweight materials used to protect assets against mechanical insults, such as shock and vibration. Two features are important to enhance their energy absorption characteristics: the foam structure and the matrix phase mechanical behavior. This study investigates novel approaches to control both of these features to enhance the energy absorption capability of flexible lattice foams. First, we consider 3D printing via digital light processing (DLP) as a method to control the foam mesostructure across a suite of periodic unit cells. Second, we introduce an additional energy dissipation mechanism in the solid matrix phase material by 3D printing the lattice foams with polydomain liquid crystal elastomer (LCE), which undergo a mechanically induced phase transition under large strains. This phase transition is associated with LC mesogen rotation and alignment and provides a second mechanism for mechanical energy dissipation in addition to the viscoelastic relaxation of the polymer network. We contrast the 3D printed LCE lattices with conventional, thermomechanically near-equivalent elastomer lattice foams to quantify the energy-absorbing enhancement the LCE matrix phase provides. Under cyclic quasi-static uniaxial compression conditions, the LCE lattices show dramatically enhanced energy dissipation in uniaxial compression compared to the non-LCE equivalent foams printed with a commercially available photocurable elastomer resin. The lattice geometry also plays a prominent role in determining the energy dissipation ratio between the LCE and non-LCE foams. We show that when increasing the lattice connectivity, the foam deformation transitions from bending-dominated to stretching-dominated deformations, which generates higher axial strains in the struts and higher energy dissipation in the lattice foam, as stretching allows greater mesogen rotation than bending. The LCE foams demonstrate superior energy absorption during the repeated dynamic loading during drop testing compared with the non-LCE equivalent foams, demonstrating the potential of LCEs to enhance physical protection systems against mechanical impact.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented
The purpose of this document is to provide evidence for assessing the adequacy of parameterized material models for a collection of materials used in a finite element analyses setting. “Adequacy” is relative to the intended use of the material in particular analyses. The intended application of the material models covered within this document is for system level abnormal mechanical solid mechanics analyses. Generally, material model parameterizations should be valid from temperatures of approximately -50 to 70° C, across a range of strain rates, and (depending on details of the parts involved) large deformations. Each material covered in this document is presented in its own chapter with a common format across materials. Model assumptions, limitations, existing validation results, readiness for use with uncertainty quantification, general usage guidance, and failure considerations are all provided along with specific parameterization inputs suitable for the finite element analysis code Sierra/Solid Mechanics.
In this paper we introduce a method to compare sets of full-field data using Alpert tree-wavelet transforms. The Alpert tree-wavelet methods transform the data into a spectral space allowing the comparison of all points in the fields by comparing spectral amplitudes. The methods are insensitive to translation, scale and discretization and can be applied to arbitrary geometries. This makes them especially well suited for comparison of field data sets coming from two different sources such as when comparing simulation field data to experimental field data. We have developed both global and local error metrics to quantify the error between two fields. We verify the methods on two-dimensional and three-dimensional discretizations of analytical functions. We then deploy the methods to compare full-field strain data from a simulation of elastomeric syntactic foam.
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.