Publications

Results 76–100 of 154
Skip to search filters

The Science of Battery Degradation

Sullivan, John P.; Fenton, Kyle R.; El Gabaly Marquez, Farid E.; Harris, Charles T.; Hayden, Carl C.; Hudak, Nicholas H.; Jungjohann, Katherine L.; Kliewer, Christopher J.; Leung, Kevin L.; McDaniel, Anthony H.; Nagasubramanian, Ganesan N.; Sugar, Joshua D.; Talin, A.A.; Tenney, Craig M.; Zavadil, Kevin R.

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte-interphase layer, and this cross-over can be modeled and predicted.

More Details

Density functional theory and conductivity studies of boron-based anion receptors

Journal of the Electrochemical Society

Leung, Kevin L.; Chaudhari, Mangesh I.; Rempe, Susan R.; Fenton, Kyle R.; Pratt, Harry D.; Staiger, Chad L.; Nagasubramanian, Ganesan N.

Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries.We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor is sufficiently electrophilic that organic solvent molecules compete with F- for boron-site binding, and specific solvent effects must be considered when predicting its F- affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F- and organic solvent molecules. After accounting for specific solvent effects, however, its net F- affinity is about the same as the simple oxalate-based anion receptor. Finally, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F- ions.

More Details

Toward First Principles Prediction of Voltage Dependences of Electrolyte/Electrolyte Interfacial Processes in Lithium Ion Batteries

Journal of Physical Chemistry. C

Leung, Kevin L.; Tenney, Craig M.

In lithium ion batteries, Li+ intercalation into electrodes is induced by applied voltages, which are in turn associated with free energy changes of Li+ transfer (ΔGt) between the solid and liquid phases. Using ab initio molecular dynamics (AIMD) and thermodynamic integration techniques, we compute ΔGt for the virtual transfer of a Li+ from a LiC6 anode slab, with pristine basal planes exposed, to liquid ethylene carbonate confined in a nanogap. The onset of delithiation, at ΔGt = 0, is found to occur on LiC6 anodes with negatively charged basal surfaces. These negative surface charges are evidently needed to retain Li+ inside the electrode and should affect passivation (“SEI”) film formation processes. Fast electrolyte decomposition is observed at even larger electron surface densities. By assigning the experimentally known voltage (0.1 V vs Li+/Li metal) to the predicted delithiation onset, an absolute potential scale is obtained. This enables voltage calibrations in simulation cells used in AIMD studies and paves the way for future prediction of voltage dependences in interfacial processes in batteries.

More Details
Results 76–100 of 154
Results 76–100 of 154