Publications

Results 1–25 of 154
Skip to search filters

Ab initio molecular dynamics free energy study of enhanced copper (II) dimerization on mineral surfaces

Communications Chemistry

Leung, Kevin L.; Greathouse, Jeffery A.

Understanding the adsorption of isolated metal cations from water on to mineral surfaces is critical for toxic waste retention and cleanup in the environment. Heterogeneous nucleation of metal oxyhydroxides and other minerals on material surfaces is key to crystal growth and dissolution. The link connecting these two areas, namely cation dimerization and polymerization, is far less understood. In this work we apply ab initio molecular dynamics calculations to examine the coordination structure of hydroxide-bridged Cu(II) dimers, and the free energy changes associated with Cu(II) dimerization on silica surfaces. The dimer dissociation pathway involves sequential breaking of two Cu2+-OH− bonds, yielding three local minima in the free energy profiles associated with 0-2 OH− bridges between the metal cations, and requires the design of a (to our knowledge) novel reaction coordinate for the simulations. Cu(II) adsorbed on silica surfaces are found to exhibit stronger tendency towards dimerization than when residing in water. Cluster-plus-implicit-solvent methods yield incorrect trends if OH− hydration is not correctly depicted. The predicted free energy landscapes are consistent with fast equilibrium times (seconds) among adsorbed structures, and favor Cu2+ dimer formation on silica surfaces over monomer adsorption.

More Details

Role of Coatings as Artificial Solid Electrolyte Interphases on Lithium Metal Self-Discharge

Journal of Physical Chemistry. C

Merrill, Laura C.; Long, Daniel M.; Small, Kathryn A.; Jungjohann, Katherine L.; Leung, Kevin L.; Bassett, Kimberly L.; Harrison, Katharine L.

Artificial solid electrolyte interphases have provided a path to improved cycle life for high energy density, next-generation anodes like lithium metal. Although long cycle life is necessary for widespread implementation, understanding and mitigating the effects of aging and self-discharge are also required. In this report we investigate several coating materials and their role in calendar life aging of lithium. We find that the oxide coatings are electronically passivating whereas the LiF coating slows charge transfer kinetics. Furthermore, the Coulombic loss during self-discharge measurements improves with the oxide layers and worsens with the LiF layer. It is found that none of the coatings create a continuous conformal, electronically passivating layer on top of the deposited lithium nor are they likely to distribute evenly through a porous deposit, suggesting that none of the materials are acting as an artificial solid electrolyte interphase. Instead, they likely alter performance through modulating lithium nucleation and growth.

More Details

First Principles Determination of the Potential-of-Zero-Charge in an Alumina-Coated Aluminum/Water Interface Model for Corrosion Applications

Journal of the Electrochemical Society

Leung, Kevin L.

The surfaces of most metals immersed in aqueous electrolytes have a several-nanometer-thick oxide/hydroxide surface layer. This gives rise to the existence of both metal|oxide and oxide|liquid electrotlyte interfaces, and makes it challenging to correlate atomic length-scale structures with electrochemical properties such the potential-of-zero-charge (PZC). The PZC has been shown to be correlated the onset potential for pitting corrosion. Here, we conduct large-scale Density Functional Theory and ab initio molecular dynamics to calculate the PZC of a Al(111)|γ-Al2O3(110)| water double-interface model within the context of aluminum corrosion. By partitioning the multiple interfaces involved into binary components with additive contributions to the overall work function and voltage, we predict the PZC to be -1.53 V vs SHE for this model. Furthermore, we calculate the orbital energy levels of defects like oxygen vacancies in the oxide, which are critical parameters in theories associated with pitting corrosion. We predict that the Fermi level at the PZC lies above the impurity defect levels of the oxygen vacancies, which are therefore uncharged at the PZC. From the PZC estimate, we predict the voltage needed to create oxygen vacancies with net positive charges within a flatband approximation.

More Details

Interplay of physically different properties leading to challenges in separating lanthanide cations - anab initiomolecular dynamics and experimental study

Physical Chemistry Chemical Physics

Leung, Kevin L.; Ilgen, Anastasia G.; Criscenti, Louise J.

Lanthanide elements have well-documented similarities in their chemical behavior, which make the valuable trivalent lanthanide cations (Ln3+) particularly difficult to separate from each other in water. In this work, we applyab initiomolecular dynamics simulations to compare the free energies (ΔGads) associated with the adsorption of lanthanide cations to silica surfaces at a pH condition where SiO−groups are present. The predicted ΔGadsfor lutetium (Lu3+) and europium (Eu3+) are similar within statistical uncertainties; this is in qualitative agreement with our batch adsorption measurements on silica. This finding is remarkable because the two cations exhibit hydration free energies (ΔGhyd) that differ by >2 eV, different hydration numbers, and different hydrolysis behavior far from silica surfaces. We observe that the similarity in Lu3+and Eu3+ΔGadsis the result of a delicate cancellation between the difference in Eu3+and Lu3+hydration (ΔGhyd), and their difference in binding energies to silica. We propose that disrupting this cancellation at the two end points, either for adsorbed or completely desorbed lanthanides (e.g.,viananoconfinment or mixed solvents), will lead to effective Ln3+separation.

More Details

Edge-Propagation Discharge Mechanism in CFxBatteries - A First-Principles and Experimental Study

Chemistry of Materials

Leung, Kevin L.; Schorr, Noah B.; Mayer, Matthew; Lambert, Timothy N.; Meng, Y.S.; Harrison, Katharine L.

Graphite fluoride (CFx) cathodes coupled with lithium anodes yield one of the highest theoretical specific capacities (>860 mAh/g) among primary batteries. In practice, the observed discharge voltage (∼2.5 V) is significantly lower than thermodynamic limits (>4.5 V), the discharge rate is low, and so far Li/CFx has only been used in primary batteries. Understanding the discharge mechanism at atomic length scales will improve practical CFx energy density, rate capability, and rechargeability. So far, purely experimental techniques have not identified the correct discharge mechanism or explained the discharge voltage. We apply density functional theory calculations to demonstrate that a CFx-edge propagation discharge mechanism based on lithium insertion at the CF/C boundary in partially discharged CFx exhibits a voltage range of 2.5 to 2.9 V - depending on whether solvent molecules are involved. The voltages and solvent dependence agree with our discharge and galvanostatic intermittent titration technique measurements. The predicted discharge kinetics are consistent with CFx operations. Finally, we predict some Li/CFx rechargeability under the application of high potentials, along a charging pathway different from that of discharge. Our work represents a general, quasi-kinetic framework to understand the discharge of conversion cathodes, circumventing the widely used phase diagram approach which most likely does not apply to Li/CFx because equilibrium conditions are not attained in this system.

More Details

Elucidating Hydrogen Reaction-Induced Water Desorption from Oxide-Passivated Metal Surfaces for Plasma Applications

Cochrane, Kyle C.; Goeke, Ronald G.; Wilson, Alex &.; Leung, Kevin L.

Elucidating the mechanisms responsible for sub-microsecond desorption of water and other impurities from electrode surfaces at high heating rates is crucial for understanding pulsed power behavior. Ionization of desorbed impurities in the vacuum regions causes power or current loss; devising methods to limit such desorption during the short time scale of pulsed power is needed to improve corresponding applications. Previous molecular modeling studies have strongly suggested that, under high vacuum conditions, the amount of water impurity desorbing from oxide surfaces on metal electrodes is at a sub-monolayer level at room temperature, which appears insufficient to explain observed pulsed power energy losses at high current densities. In this work, we apply Density Functional Theory (DFT) techniques to show that hydrogen trapped inside iron metal can diffuse into hematite (α-Fe2O3) on the metal surface, ultimately reacting with the oxide to form Fe(II) and H2O. The latter desorbs at elevated temperature and may explain the anomalous amount of desorbed impurity inferred from pulsed-power experiments. We also apply a suite of characterization techniques to demonstrate that when iron metal is heated to 650 °C, the dominant surface oxide component becomes α-Fe2O3. The oxide facets exposed are found to be a mixture of (0001), (10-10), and others, in agreement with the DFT models used.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; De Zetter, Karen J.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Glines, Forrest W.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details

Quasi-equilibrium predictions of water desorption kinetics from rapidly-heated metal oxide surfaces

Journal of Physics Condensed Matter

Leung, Kevin L.; Criscenti, Louise J.; Robinson, Allen C.

Controlling sub-microsecond desorption of water and other impurities from electrode surfaces at high heating rates is crucial for pulsed power applications. Despite the short time scales involved, quasi-equilibrium ideas based on transition state theory (TST) and Arrhenius temperature dependence have been widely applied to fit desorption activation free energies. In this work, we apply molecular dynamics (MD) simulations in conjunction with equilibrium potential-of-mean-force (PMF) techniques to directly compute the activation free energies (ΔG∗) associated with desorption of intact water molecules from Fe2O3 and Cr2O3 (0001) surfaces. The desorption free energy profiles are diffuse, without maxima, and have substantial dependences on temperature and surface water coverage. Incorporating the predicted ΔG∗ into an analytical form gives rate equations that are in reasonable agreement with non-equilibrium molecular dynamics desorption simulations. We also show that different ΔG∗ analytical functional forms which give similar predictions at a particular heating rate can yield desorption times that differ by up to a factor of four or more when the ramp rate is extrapolated by 8 orders of magnitude. This highlights the importance of constructing a physically-motivated ΔG∗ functional form to predict fast desorption kinetics.

More Details

DFT modelling of explicit solid-solid interfaces in batteries: Methods and challenges

Physical Chemistry Chemical Physics

Leung, Kevin L.

Density Functional Theory (DFT) calculations of electrode material properties in high energy density storage devices like lithium batteries have been standard practice for decades. In contrast, DFT modelling of explicit interfaces in batteries arguably lacks universally adopted methodology and needs further conceptual development. In this paper, we focus on solid-solid interfaces, which are ubiquitous not just in all-solid state batteries; liquid-electrolyte-based batteries often rely on thin, solid passivating films on electrode surfaces to function. We use metal anode calculations to illustrate that explicit interface models are critical for elucidating contact potentials, electric fields at interfaces, and kinetic stability with respect to parasitic reactions. The examples emphasize three key challenges: (1) the "dirty" nature of most battery electrode surfaces; (2) voltage calibration and control; and (3) the fact that interfacial structures are governed by kinetics, not thermodynamics. To meet these challenges, developing new computational techniques and importing insights from other electrochemical disciplines will be beneficial.

More Details
Results 1–25 of 154
Results 1–25 of 154