Publications

Results 51–75 of 87
Skip to search filters

An analysis of four different approaches to predict and control sintering

Journal of the American Ceramic Society

Reiterer, Markus W.; Ewsuk, Kevin G.

Understanding and predicting sintering, which have been goals since the first attempts to mathematically describe the sintering process in the 1950s, are necessary to eliminate machining after sintering and to reliably predict and control the sintered microstructure and the resultant mechanical and other desired properties. In this study, four different sintering models are evaluated relative to one another and the experimental data, revealing their attributes, deficiencies, and modifications/improvements in order to facilitate their application, including the following: (i) a microstructure-based model for solid state sintering, mainly developed by Riedel and Svoboda (RS); (ii) a viscous sintering (SOVS) model developed by Skorohod and advanced by Olevsky; (iii) a Kinetic Monte Carlo (KMC) model provided by Tikare; and (iv) the master sintering curve (MSC) approach introduced by Johnson et al. For different reasons, all four models have deficiencies that preclude achieving the most challenging goal of being able to comprehensively understand and predict sintering behavior: (i) the RS and the KMC models are complicated and difficult to use; (ii) the SOVS model cannot predict microstructure evolution; and (iii) the KMC model and the MSC have no stresses in their mathematical description, so they cannot simulate the effects of external forces. Each model also has attributes: (i) the KMC model allows one to follow the evolution of mesostructure; (ii) the MSC concept and the RS model are suitable for predicting densification curves for a wide variety of temperature-time profiles; and (iii) the SOVS and the RS models, which are implemented into finite element codes, can be used to predict density gradients and the warping of complex shape parts. Individually and together, the MSC, KMC, SOVS, and RS models can be useful tools to advance the fundamental understanding and improve the control of sintering. © 2009 The American Ceramic Society.

More Details

Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems

Ewsuk, Kevin G.; Hinklin, Thomas R.; Neilsen, Michael K.; Tandon, Rajan T.; Arguello, Jose G.; Dempsey, James F.; Holcomb, David J.

An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

More Details

Planar LTCC transformers for high voltage flyback converters

Roesler, Alexander R.; Schare, Joshua M.; Ewsuk, Kevin G.; Glass, Sarah J.

This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstrated LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.

More Details
Results 51–75 of 87
Results 51–75 of 87