Publications

Results 76–83 of 83
Skip to search filters

The romes method for statistical modeling of reduced-order-model error

SIAM-ASA Journal on Uncertainty Quantification

Drohmann, Martin; Carlberg, Kevin T.

This work presents a technique for statistically modeling errors introduced by reduced-order models. The method employs Gaussian-process regression to construct a mapping from a small number of computationally inexpensive “error indicators” to a distribution over the true error. The variance of this distribution can be interpreted as the (epistemic) uncertainty introduced by the reduced-order model. To model normed errors, the method employs existing rigorous error bounds and residual norms as indicators; numerical experiments show that the method leads to a near-optimal expected effectivity in contrast to typical error bounds. To model errors in general outputs, the method uses dual-weighted residuals-which are amenable to uncertainty control-as indicators. Experiments illustrate that correcting the reduced-order-model output with this surrogate can improve prediction accuracy by an order of magnitude; this contrasts with existing “multifidelity correction” approaches, which often fail for reduced-order models and suffer from the curse of dimensionality. The proposed error surrogates also lead to a notion of “probabilistic rigor”; i.e., the surrogate bounds the error with specified probability.

More Details

Adaptive h -refinement for reduced-order models: ADAPTIVE h -refinement for reduced-order models

International Journal for Numerical Methods in Engineering

Carlberg, Kevin T.

Our work presents a method to adaptively refine reduced-order models a posteriori without requiring additional full-order-model solves. The technique is analogous to mesh-adaptive h-refinement: it enriches the reduced-basis space online by ‘splitting’ a given basis vector into several vectors with disjoint support. The splitting scheme is defined by a tree structure constructed offline via recursive k-means clustering of the state variables using snapshot data. This method identifies the vectors to split online using a dual-weighted-residual approach that aims to reduce error in an output quantity of interest. The resulting method generates a hierarchy of subspaces online without requiring large-scale operations or full-order-model solves. Furthermore, it enables the reduced-order model to satisfy any prescribed error tolerance regardless of its original fidelity, as a completely refined reduced-order model is mathematically equivalent to the original full-order model. Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the original reduced basis.

More Details

Breaking Computational Barriers: Real-time Analysis and Optimization with Large-scale Nonlinear Models via Model Reduction

Drohmann, M.D.; Tuminaro, Raymond S.; Boggs, Paul T.; Ray, Jaideep R.; van Bloemen Waanders, Bart G.; Carlberg, Kevin T.

Model reduction for dynamical systems is a promising approach for reducing the computational cost of large-scale physics-based simulations to enable high-fidelity models to be used in many- query (e.g., Bayesian inference) and near-real-time (e.g., fast-turnaround simulation) contexts. While model reduction works well for specialized problems such as linear time-invariant systems, it is much more difficult to obtain accurate, stable, and efficient reduced-order models (ROMs) for systems with general nonlinearities. This report describes several advances that enable nonlinear reduced-order models (ROMs) to be deployed in a variety of time-critical settings. First, we present an error bound for the Gauss-Newton with Approximated Tensors (GNAT) nonlinear model reduction technique. This bound allows the state-space error for the GNAT method to be quantified when applied with the backward Euler time-integration scheme. Second, we present a methodology for preserving classical Lagrangian structure in nonlinear model reduction. This technique guarantees that important properties--such as energy conservation and symplectic time-evolution maps--are preserved when performing model reduction for models described by a Lagrangian formalism (e.g., molecular dynamics, structural dynamics). Third, we present a novel technique for decreasing the temporal complexity --defined as the number of Newton-like iterations performed over the course of the simulation--by exploiting time-domain data. Fourth, we describe a novel method for refining projection-based reduced-order models a posteriori using a goal-oriented framework similar to mesh-adaptive h -refinement in finite elements. The technique allows the ROM to generate arbitrarily accurate solutions, thereby providing the ROM with a 'failsafe' mechanism in the event of insufficient training data. Finally, we present the reduced-order model error surrogate (ROMES) method for statistically quantifying reduced- order-model errors. This enables ROMs to be rigorously incorporated in uncertainty-quantification settings, as the error model can be treated as a source of epistemic uncertainty. This work was completed as part of a Truman Fellowship appointment. We note that much additional work was performed as part of the Fellowship. One salient project is the development of the Trilinos-based model-reduction software module Razor , which is currently bundled with the Albany PDE code and currently allows nonlinear reduced-order models to be constructed for any application supported in Albany. Other important projects include the following: 1. ROMES-equipped ROMs for Bayesian inference: K. Carlberg, M. Drohmann, F. Lu (Lawrence Berkeley National Laboratory), M. Morzfeld (Lawrence Berkeley National Laboratory). 2. ROM-enabled Krylov-subspace recycling: K. Carlberg, V. Forstall (University of Maryland), P. Tsuji, R. Tuminaro. 3. A pseudo balanced POD method using only dual snapshots: K. Carlberg, M. Sarovar. 4. An analysis of discrete v. continuous optimality in nonlinear model reduction: K. Carlberg, M. Barone, H. Antil (George Mason University). Journal articles for these projects are in progress at the time of this writing.

More Details
Results 76–83 of 83
Results 76–83 of 83