Publications

Results 26–28 of 28
Skip to search filters

CPUF - a chemical-structure-based polyurethane foam decomposition and foam response model

Hobbs, Michael L.; Hobbs, Michael L.; Erickson, Kenneth L.; Chu, Tze Y.; Borek, Theodore T.; Thompson, Kyle R.; Dowding, Kevin J.

A Chemical-structure-based PolyUrethane Foam (CPUF) decomposition model has been developed to predict the fire-induced response of rigid, closed-cell polyurethane foam-filled systems. The model, developed for the B-61 and W-80 fireset foam, is based on a cascade of bondbreaking reactions that produce CO2. Percolation theory is used to dynamically quantify polymer fragment populations of the thermally degrading foam. The partition between condensed-phase polymer fragments and gas-phase polymer fragments (i.e. vapor-liquid split) was determined using a vapor-liquid equilibrium model. The CPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE and CALORE, which support chemical kinetics and enclosure radiation. Elements were removed from the computational domain when the calculated solid mass fractions within the individual finite element decrease below a set criterion. Element removal, referred to as ?element death,? creates a radiation enclosure (assumed to be non-participating) as well as a decomposition front, which separates the condensed-phase encapsulant from the gas-filled enclosure. All of the chemistry parameters as well as thermophysical properties for the CPUF model were obtained from small-scale laboratory experiments. The CPUF model was evaluated by comparing predictions to measurements. The validation experiments included several thermogravimetric experiments at pressures ranging from ambient pressure to 30 bars. Larger, component-scale experiments were also used to validate the foam response model. The effects of heat flux, bulk density, orientation, embedded components, confinement and pressure were measured and compared to model predictions. Uncertainties in the model results were evaluated using a mean value approach. The measured mass loss in the TGA experiments and the measured location of the decomposition front were within the 95% prediction limit determined using the CPUF model for all of the experiments where the decomposition gases were vented sufficiently. The CPUF model results were not as good for the partially confined radiant heat experiments where the vent area was regulated to maintain pressure. Liquefaction and flow effects, which are not considered in the CPUF model, become important when the decomposition gases are confined.

More Details

Preliminary Investigation of the Thermal Decomposition of Ablefoam and EF-AR20 Foam (Ablefoam Replacement)

Ulibarri, Tamara A.; Erickson, Kenneth L.; Wiemann, Dora K.; Erickson, Kenneth L.; Castaneda, Jaime N.; Borek, Theodore T.; Renlund, Anita M.; Miller, Jill C.

Preliminary thermal decomposition experiments with Ablefoam and EF-AR20 foam (Ablefoam replacement) were done to determine the important chemical and associated physical phenomena that should be investigated to develop the foam decomposition chemistry sub-models that are required in numerical simulations of the fire-induced response of foam-filled engineered systems for nuclear safety applications. Although the two epoxy foams are physically and chemically similar, the thermal decomposition of each foam involves different chemical mechanisms, and the associated physical behavior of the foams, particularly ''foaming'' and ''liquefaction,'' have significant implications for modeling. A simplified decomposition chemistry sub-model is suggested that, subject to certain caveats, may be appropriate for ''scoping-type'' calculations.

More Details
Results 26–28 of 28
Results 26–28 of 28