Publications

Results 51–75 of 98
Skip to search filters

Impinging Water Droplets on Inclined Glass Surfaces

Armijo, Kenneth M.; Lance, Blake L.; Ho, Clifford K.

Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that photovoltaic modules and heliostats can be designed to maximize self-cleaning.

More Details

Arc-Fault Primer: Numerical, Analytical, and Experimental Characteristics of Initiation and Sustainment of Arc Plasmas (DRAFT)

Armijo, Kenneth M.; Lavrova, Olga A.; Harrison, Richard K.; Rodriguez, Salvador B.; Johnson, Jay; Schindelholz, Eric J.

While arc-faults are rare in electrical installations, many documented events have led to fires that resulted in significant damage to energy-generation, commercial and residential systems, as well as surrounding structures, in both the United States and abroad. Arc-plasma discharges arise over time due to a variety of reliability issues related to cable material degradation, electrical and mechanical stresses or acute conductive wiring dislocations. These may lead to discontinuity between energized conductors, facilitating arcing events and fires. Arc-flash events rapidly release significant energy in a localized volume, where the electric arc experiences a reduction in resistance. This facilitates a reduction in electrical resistance as the arc temperature and pressure can increase rapidly. Strong pressure waves, electromagnetic interference (EMI), and intense light from an arc pose a threat to electrical worker safety and system equipment. This arc-fault primer provides basic fundamental insight into arc-fault plasma discharges, and an overview of direct current (DC) and alternating current (AC) arc-fault phenomena. This primer also covers pressure waves and EMI arc-fault hazard analyses related to incident energy prediction and potential damage analysis. Mitigation strategies are also discussed related to engineering design and employment of protective devices including arc-fault circuit interrupters (AFCIs). Best practices related to worker safety are also covered, especially as they pertain to electrical codes and standards, particularly Institute of Electrical and Electronics Engineers (IEEE) 1584 and National Fire Protection Agency (NFPA) 70E. Throughout the primer various modelling and test capabilities at Sandia National Laboratories are also covered, especially as they relate to novel methods of arc-fault/arc-flash characterization and mitigation approaches. Herein, this work describes methods for producing and characterizing controlled, sustained arcs at atmospheric pressures as well as methods for mitigation with novel materials.

More Details

Heat Transfer Phenomena in Concentrating Solar Power Systems

Armijo, Kenneth M.; Shinde, Subhash L.

Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

More Details

Phenomenological Studies on Sodium for CSP Applications: A Safety Review

Armijo, Kenneth M.; Andraka, Charles E.

Sodium as a heat transfer fluid (HTF) can achieve temperatures above 700°C to improve power cycle performance for reducing large infrastructure costs of high-temperature systems. Current concentrating solar power (CSP) sensible HTF’s (e.g. air, salts) have poor thermal conductivity, and thus low heat transfer capabilities, requiring a large receiver. The high thermal conductivity of sodium has demonstrated high heat transfer rates on dish and towers systems, which allow a reduction in receiver area by a factor of two to four, reducing re-radiation and convection losses and cost by a similar factor. Sodium produces saturated vapor at pressures suitable for transport starting at 600°C and reaches one atmosphere at 870°C, providing a wide range of suitable latent operating conditions that match proposed high temperature, isothermal input power cycles. This advantage could increase the receiver and system efficiency while lowering the cost of CSP tower systems. Although there are a number of desirable thermal performance advantages associated with sodium, its propensity to rapidly oxidize presents safety challenges. This investigation presents a literature review that captures historical operations/handling lessons for advanced sodium systems, and the current state-of-knowledge related to sodium combustion behavior. Technical and operational solutions addressing sodium safety and applications in CSP will be discussed, including unique safety hazards and advantages using latent sodium. Operation and maintenance experience from the nuclear industry with sensible and latent systems will also be discussed in the context of safety challenges and risk mitigation solutions.

More Details

Characterization of fire hazards of aged photovoltaic balance-of-systems connectors

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Schindelholz, Eric J.; Yang, Benjamin B.; Armijo, Kenneth M.; McKenzie, Bonnie B.; Taylor, Jason M.; Sorensen, Neil R.; Lavrova, Olga A.

Three balance of systems (BOS) connector designs common to industry were investigated as a means of assessing reliability from the perspective of arc fault risk. These connectors were aged in field and laboratory environments and performance data captured for future development of a reliability model. Comparison of connector resistance measured during damp heat, mixed flowing gas and field exposure in a light industrial environment indicated disparities in performance across the three designs. Performance was, in part, linked to materials of construction. A procedure was developed to evaluate new and aged connectors for arc fault risk and tested for one of the designs. Those connectors exposed to mixed flowing gas corrosion exhibited considerable Joule heating that may enhance arcing behavior, suggesting temperature monitoring as a potential method for arc fault prognostics. These findings, together with further characterization of connector aging, can provide operators of photovoltaic installations the information necessary to develop a data-driven approach to BOS connector maintenance as well as opportunities for arc fault prognostics.

More Details

PV Systems Reliability Final Technical Report

Lavrova, Olga A.; Flicker, Jack D.; Johnson, Jay; Armijo, Kenneth M.; Gonzalez, Sigifredo G.; Schindelholz, Eric J.; Sorensen, Neil R.; Yang, Ben Y.

The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

More Details
Results 51–75 of 98
Results 51–75 of 98