Publications

Results 26–50 of 98
Skip to search filters

High Temperature Silicon Carbide Receiver Tubes for Concentrating Solar Power

Walker, Matthew W.; Armijo, Kenneth M.; Yellowhair, Julius; Ho, Clifford K.; Bohinsky, Amy B.; Halfinger, Jeff H.; Feinroth, Herb F.

In order for Concentrating Solar Power plants (CSP) to achieve the desired cost breakpoint, significant improvement in performance is required resulting in the need to increase temperatures of fluid systems. A US DOE Small Business Voucher project was established at Sandia to explore the performance characteristics of Ceramic Tubular Products (CTP) silicon carbide TRIPLEX tubes in key categories relating to its performance as a solar receiver in next generation CSP plants. Along these lines, the following research tasks were completed : (1) Solar Spectrum Testing, (2) Corrosion Testing in Molten Chloride Salt, (3) Mechanical Shock Testing, and (4) Thermal Shock Testing. Through the completion of these four tasks, it has been found that the performance of CTP's material across all of these categories is promising, and merits further investigation beyond this initial investigation. Through 50 solar aging cycles, the CTP material exhibited excellent stability to high temperatures in air, exhibited at or above 0.95 absorptance, and had measured emittances within the range of 0.88-0.90. Through molten salt corrosion testing at 750degC it was found that SiC exhibits significantly lower mass change (-- 90 times lower) than Haynes 230 during 108 hours of salt exposure. The CTP TRIPLEX material performed significantly better than the SiC monolithic tube material in mechanical shock testing, breaking at an average height of 3 times that for the monolithic tubes. Through simulated rain thermal shock testing of CTP composite tubes at 800degC it was found that CTP's SiC composite tubes were able to survive thermal shock, while the SiC monolithic tubes did not. ACKNOWLEDGEMENTS * US Department of Energy Office of EERE for sponsorship of this project * Andrew Dawson of the DOE Office of EERE for Project Management, including the excellent technical insights that he provided throughout the project * Ken Armijo lead the Thermal Shock Testing activities * Cliff Ho and Julius Yellowhair led the Solar Spectrum Testing activities * Jeff Halfinger prepared the CTP specimens for each of the research tasks * Herb Feinroth provided guidance and input into the preparation for the test specimens and the associated research tasks * Alan Kruizenga collaborated with CTP to apply for and be awarded this project from DOE EERE. The scope for the project was developed by Alan together with CTP. * Rio Hatton and Jesus Ortega (student interns) helped with portions of the solar simulator testing, reflectance/emittance data collection, and image (including microscope) collection. * Kent Smith helped design and fabricate the high temperature molten salt corrosion setup * Jeff Chames and Javier Cebrian completed the microscopy for the molten salt corrosion test specimens * Amy Bohinsky (student intern) and Kevin Nelson helped complete the mechanical shock testing for the monolithic and composite tubes, including organizing the results for the final report. * Josh Christian and Daniel Ray helped with portions of the Thermal Shock Testing * Mark Stavig completed the polyethylene plug testing associated with the Thermal Shock Testing

More Details

Optical performance modeling and analysis of a tensile ganged heliostat concept

ASME 2019 13th International Conference on Energy Sustainability, ES 2019, collocated with the ASME 2019 Heat Transfer Summer Conference

Yellowhair, Julius; Andraka, Charles E.; Armijo, Kenneth M.; Ortega, J.; Clair, Jim

Designs of conventional heliostats have been varied to reduce cost, improve optical performance or both. In one case, reflective mirror area on heliostats has been increased with the goal of reducing the number of pedestals and drives and consequently reducing the cost on those components. The larger reflective areas, however, increase torques due to larger mirror weights and wind loads. Higher cost heavy-duty motors and drives must be used, which negatively impact any economic gains. To improve on optical performance, the opposite may be true where the mirror reflective areas are reduced for better control of the heliostat pointing and tracking. For smaller heliostats, gravity and wind loads are reduced, but many more heliostats must be added to provide sufficient solar flux to the receiver. For conventional heliostats, there seems to be no clear cost advantage of one heliostat design over other designs. The advantage of ganged heliostats is the pedestal and tracking motors are shared between multiple heliostats, thus can significantly reduce the cost on those components. In this paper, a new concept of cable-suspended tensile ganged heliostats is introduced, preliminary analysis is performed for optical performance and incorporated into a 10 MW conceptual power tower plant where it was compared to the performance of a baseline plant with a conventional radially staggered heliostat field. The baseline plant uses conventional heliostats and the layout optimized in System Advisor Model (SAM) tool. The ganged heliostats are suspended on two guide cables. The cables are attached to rotations arms which are anchored to end posts. The layout was optimized offline and then transferred to SAM for performance evaluation. In the initial modeling of the tensile ganged heliostats for a 10 MW power tower plant, equal heliostat spacing along the guide cables was assumed, which as suspected leads to high shading and blocking losses. The goal was then to optimize the heliostat spacing such that annual shading and blocking losses are minimized. After adjusting the spacing on tensile ganged heliostats for minimal blocking losses, the annual block/shading efficiency was greater than 90% and annual optical efficiency of the field became comparable to the conventional field at slightly above 60%.

More Details

On-sun tracking evaluation of a small-scale tensile ganged heliostat prototype

ASME 2019 13th International Conference on Energy Sustainability, ES 2019, collocated with the ASME 2019 Heat Transfer Summer Conference

Yellowhair, Julius; Armijo, Kenneth M.; Ortega, J.; Clair, Jim

Various ganged heliostat concepts have been proposed in the past. The attractive aspect of ganged heliostat concepts is multiple heliostats are grouped so that pedestals, tracking drives, and other components can be shared, thus reducing the number of components. The reduction in the number of components is thought to significantly reduce cost. However, since the drives and tracking mechanisms are shared, accurate on-sun tracking of grouped heliostats becomes challenging because the angular degrees-of-freedom are now limited for the multiple number of combined heliostats. In this paper, the preliminary evaluation of the on-sun tracking of a novel tensile-based cable suspended ganged heliostat concept is provided. In this concept, multiple heliostats are attached to two guide cables. The cables are attached to rotation spreader arms which are anchored to end posts on two ends. The guide cables form a catenary which makes tracking on-sun interesting and challenging. Tracking is performed by rotating the end plates that the two cables are attached to and rotating the individual heliostats in one axis. An additional degree-of-freedom can be added by differentially tensioning the two cables, but this may be challenging to do in practice. Manual on-sun tracking was demonstrated on small-scale prototypes. The rotation arms were coarsely controlled with linear actuators, and the individual heliostats were hand-adjusted in local pitch angle and locked in place with set screws. The coarse angle adjustments showed the tracking accuracy was 3-4 milli-radians. However, with better angle control mechanisms the tracking accuracy can be drastically improved. In this paper, we provide tracking data that was collected for a day, which showed feasibility for automated on-sun tracking. The next steps are to implement better angle control mechanisms and develop tracking algorithms so that the ganged heliostats can automatically track.

More Details
Results 26–50 of 98
Results 26–50 of 98