Publications

Results 101–149 of 149
Skip to search filters

Transportation implications of a closed fuel cycle

Weiner, Ruth F.; Sorenson, Ken B.; Dennis, Matthew L.

Transportation for each step of a closed fuel cycle is analyzed in consideration of the availability of appropriate transportation infrastructure. The United States has both experience and certified casks for transportation that may be required by this cycle, except for the transport of fresh and used MOX fuel and fresh and used Advanced Burner Reactor (ABR) fuel. Packaging that had been used for other fuel with somewhat similar characteristics may be appropriate for these fuels, but would be inefficient. Therefore, the required neutron and gamma shielding, heat dissipation, and criticality were calculated for MOX and ABR fresh and spent fuel. Criticality would not be an issue, but the packaging design would need to balance neutron shielding and regulatory heat dissipation requirements.

More Details

Surrogate/spent fuel sabotage aerosol ratio testing:phase 1 summary and results

Yoshimura, Richard H.; Dickey, Roy R.; Sorenson, Ken B.

This multinational test program is quantifying the aerosol particulates produced when a high energy density device (HEDD) impacts surrogate material and actual spent fuel test rodlets. The experimental work, performed in four consecutive test phases, has been in progress for several years. The overall program provides needed data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This program also provides significant political benefits in international cooperation for nuclear security related evaluations. The spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC), and supported by both the U.S. Department of Energy and Nuclear Regulatory Commission. This report summarizes the preliminary, Phase 1 work performed in 2001 and 2002 at Sandia National Laboratories and the Fraunhofer Institute, Germany, and documents the experimental results obtained, observations, and preliminary interpretations. Phase 1 testing included: performance quantifications of the HEDD devices; characterization of the HEDD or conical shaped charge (CSC) jet properties with multiple tests; refinement of the aerosol particle collection apparatus being used; and, CSC jet-aerosol tests using leaded glass plates and glass pellets, serving as representative brittle materials. Phase 1 testing was quite important for the design and performance of the following Phase 2 test program and test apparatus.

More Details

Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary

Sorenson, Ken B.; Borek, Theodore T.; Dickey, Roy R.; Brockmann, John E.; Lucero, Daniel A.; Gregson, Michael W.; Coats, Richard L.

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) and supported by both the U.S. Department of Energy and the Nuclear Regulatory Commission.

More Details

Initiation of depleted uranium oxide and spent fuel testing for the spent fuel sabotage aerosol ratio program

Proposed for publication in Packaging, Transport, Storage and Security of Radioactive Material (Ramtrans Publishing).

Gregson, Michael W.; Sorenson, Ken B.

The authors provide a detailed overview of an on-going, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high-energy-density device. The program participants in the United States plus Germany, France and the United Kingdom, part of the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) have strongly supported and coordinated this research program. Sandia National Laboratories has the lead role for conducting this research program; test program support is provided by both the US Department of Energy and the US Nuclear Regulatory Commission. The authors provide a summary of the overall, multiphase test design and a description of all explosive containment and aerosol collection test components used. They focus on the recently initiated tests on 'surrogate' spent fuel, unirradiated depleted uranium oxide and forthcoming actual spent fuel tests, and briefly summarize similar results from completed surrogate tests that used non-radioactive, sintered cerium oxide ceramic pellets in test rods.

More Details

Surrogate/spent fuel sabotage : aerosol ratio test program and Phase 2 test results

Molecke, Martin A.; Sorenson, Ken B.; Borek, Theodore T.

A multinational test program is in progress to quantify the aerosol particulates produced when a high energy density device, HEDD, impacts surrogate material and actual spent fuel test rodlets. This program provides needed data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments; the program also provides significant political benefits in international cooperation. We are quantifying the spent fuel ratio, SFR, the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are crucial for predicting radiological impacts. This document includes a thorough description of the test program, including the current, detailed test plan, concept and design, plus a description of all test components, and requirements for future components and related nuclear facility needs. It also serves as a program status report as of the end of FY 2003. All available test results, observations, and analyses - primarily for surrogate material Phase 2 tests using cerium oxide sintered ceramic pellets are included. This spent fuel sabotage - aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC, and supported by both the U.S. Department of Energy and Nuclear Regulatory Commission.

More Details

A multi-attribute utility decision analysis for treatment alternatives for the DOE/SR aluminum-based spent nuclear fuel

Risk Analysis

Davis, F.J.; Weiner, Ruth F.; Wheeler, Timothy A.; Sorenson, Ken B.; Kuzio, Kenneth A.; Wheeler, Timothy A.

A multi-attribute utility analysis is applied to a decision process to select a treatment method for the management of aluminum-based spent nuclear fuel (Al-SNF) owned by the US Department of Energy (DOE). DOE will receive, treat, and temporarily store Al-SNF, most of which is composed of highly enriched uranium, at its Savannah River Site in South Carolina. DOE intends ultimately to send the treated Al-SNF to a geologic repository for permanent disposal. DOE initially considered ten treatment alternatives for the management of Al-SNF, and has narrowed the choice to two of these: the direct disposal and melt and dilute alternatives. The decision analysis presented in this document focuses on a formal decision process used to evaluate these two remaining alternatives.

More Details
Results 101–149 of 149
Results 101–149 of 149