Publications

Results 1–25 of 62
Skip to search filters

Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number

Journal of Power Sources

Wang, Yun; Chen, Ken S.

In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557–3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.

More Details

Reimagining liquid transportation fuels : sunshine to petrol

Allendorf, Mark D.; Staiger, Chad S.; Ambrosini, Andrea A.; Chen, Ken S.; Coker, Eric N.; Dedrick, Daniel E.; Hogan, Roy E.; Ermanoski, Ivan E.; Johnson, Terry A.; McDaniel, Anthony H.

Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

More Details

Modeling chemical and thermal states of reactive metal oxides in a CR5 solar thermochemical heat engine

ASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology

Hogan, R.E.; Miller, J.E.; James, D.L.; Chen, Ken S.; Diver, R.B.

"Sunshine to Petrol" is a grand-challenge research project at Sandia National Laboratories with the objective of creating a technology for producing feedstocks for making liquid fuels by splitting carbon dioxide (and water) using concentrated solar energy [1]. A reactor-level performance model is described for computing the solar-driven thermochemical splitting of carbon dioxide via a two-step metal-oxide cycle. The model simulates the thermochemical performance of the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5). The numerical model for computing the reactor thermochemical performance is formulated as a system of coupled first-order ordinary differential equations describing the energy and mass transfer within each reactive ring and radiative energy transfer between adjacent rings. In this formulation, each of the counter-rotating rings is treated in a one-dimensional sense in the circumferential direction; supporting circumferential temperature and species gradients with assumed negligible gradients in both the radial and axial directions. The model includes radiative heat transfer between adjacent counter-rotating rings, variations in the incident solar flux distribution, heat losses to the reactor housing, and energy of reaction associated with the reduction and oxidation reactions. An overview of the physics included in this first-generation numerical model will be presented. Preliminary results include the circumferential distributions of temperature and species within each of the reactive rings. The computed overall chemical conversion efficiency will be presented for a range of design and operating parameters; including ring speed, carrier ring mass, reactive material loading, radiative emissivity, and differing incident flux distributions. Copyright © 2012 by ASME.

More Details

Elucidating through-plane liquid water profile in a polymer electrolyte membrane fuel cell

ECS Transactions

Wang, Yun; Chen, Ken S.

In this paper, a numerical model incorporating micro-porous layers (MPLs) is presented for simulating water transport within the gas diffusion layers (GDLs) and MPLs as well as across their interfaces in a polymer electrolyte membrane (PEM) fuel cell. One-dimensional analysis is conducted to investigate the impacts of MPL and GDL properties on the liquid-water profile across the anode GDL-MPL and cathode MPL-GDL regions. Furthermore, two-dimensional numerical simulations that take MPLs into account are also carried out to elucidate liquid water transport, particularly through-plane liquid-water profile in a PEM fuel cell. Results from case studies are presented. ©The Electrochemical Society.

More Details

Systematic parameter estimation and sensitivity analysis using a multidimensional PEMFC model coupled with DAKOTA

Chen, Ken S.

Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated in order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.

More Details

Toward developing a computational capability for PEM fuel cell design and optimization

Chen, Ken S.; Carnes, Brian C.

In this paper, we report the progress made in our project recently funded by the US Department of Energy (DOE) toward developing a computational capability, which includes a two-phase, three-dimensional PEM (polymer electrolyte membrane) fuel cell model and its coupling with DAKOTA (a design and optimization toolkit developed and being enhanced by Sandia National Laboratories). We first present a brief literature survey in which the prominent/notable PEM fuel cell models developed by various researchers or groups are reviewed. Next, we describe the two-phase, three-dimensional PEM fuel cell model being developed, tested, and later validated by experimental data. Results from case studies are presented to illustrate the utility of our comprehensive, integrated cell model. The coupling between the PEM fuel cell model and DAKOTA is briefly discussed. Our efforts in this DOE-funded project are focused on developing a validated computational capability that can be employed for PEM fuel cell design and optimization.

More Details

Modeling solar thermochemical splitting of CO2 using metal oxide and a CR5

Chen, Ken S.; Hogan, Roy E.

A two-dimensional, multi-physics computational model based on the finite-element method is developed for simulating the process of solar thermochemical splitting of carbon dioxide (CO{sub 2}) using ferrites (Fe{sub 3}O{sub 4}/FeO) and a counter-rotating-ring receiver/recuperator or CR5, in which carbon monoxide (CO) is produced from gaseous CO{sub 2}. The model takes into account heat transfer, gas-phase flow and multiple-species diffusion in open channels and through pores of the porous reactant layer, and redox chemical reactions at the gas/solid interfaces. Results (temperature distribution, velocity field, and species concentration contours) computed using the model in a case study are presented to illustrate model utility. The model is then employed to examine the effects of injection rates of CO{sub 2} and argon neutral gas, respectively, on CO production rate and the extent of the product-species crossover.

More Details

Development and validation of a two-phase, three-dimensional model for PEM fuel cells

Chen, Ken S.

The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.

More Details
Results 1–25 of 62
Results 1–25 of 62