Publications

Results 51–75 of 77
Skip to search filters

ATLOG Modeling of Aerial Cable from the November 2016 HERMES Electromagnetic Pulse Experiments

Campione, Salvatore; Warne, Larry K.; Yee, Benjamin T.; Cartwright, Keith C.; Basilio, Lorena I.

This report details the comparison of ATLOG modeling results for the response of a finite-length dissipative aerial conductor interacting with a conducting ground to a measurement taken November 2016 at the High-Energy Radiation Megavolt Electron Source (HERMES) facility. We use the ATLOG time-domain method based on transmission line theory. Good agreement is observed between simulations and experiments. Intentionally Left Blank

More Details

Electromagnetic pulse excitation of finite- and infinitely-long lossy conductors over a lossy ground plane

Journal of Electromagnetic Waves and Applications

Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.; Turner, C.D.; Cartwright, Keith C.; Chen, Kenneth C.

This paper details a model for the response of a finite- or an infinite-length wire interacting with a conducting ground to an electromagnetic pulse excitation. We develop a frequency–domain method based on transmission line theory that we name ATLOG–Analytic Transmission Line Over Ground. This method is developed as an alternative to full-wave methods, as it delivers a fast and reliable solution. It allows for the treatment of finite or infinite lossy, coated wires, and lossy grounds. The cases of wire above ground, as well as resting on the ground and buried beneath the ground are treated. The reported method is general and the time response of the induced current is obtained using an inverse Fourier transform of the current in the frequency domain. The focus is on the characteristics and propagation of the transmission line mode. Comparisons with full-wave simulations strengthen the validity of the proposed method.

More Details

EMPHASIS(TM)/Nevada UTDEM User Guide Version 2.1.1

Turner, C.D.; Pasik, Michael F.; Pointon, Timothy D.; Pointon, Timothy D.; Cartwright, Keith C.

The Unstructured Time - Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite - element techniques on unstructured meshes. This document provides user - specific information to facilitate the use of the code for ap plications of interest. Acknowledgement The authors would like to thank all of those individuals who have helped to bring EMPHASIS/Nevada to the point it is today, including Bill Bohnhoff, Rich Drake, and all of the NEVADA code team.

More Details

EMPHASIS(TM)/Nevada Unstructured FEM Implementation Version 2.1.1

Turner, C.D.; Pointon, Timothy D.; Cartwright, Keith C.

EMPHASIS TM /NEVADA is the SIERRA/NEVADA toolkit implementation of portions of the EMP HASIS TM code suite. The purpose of the toolkit i m- plementation is to facilitate coupling to other physics drivers such as radi a- tion transport as well as to better manage code design, implementation, co m- plexity, and important verification and validation processes. This document describes the theory and implementation of the unstructured finite - element method solver , associated algorithms, and selected verification and valid a- tion . Acknowledgement The author would like to recognize all of the ALEGRA team members for their gracious and willing support through this initial Nevada toolkit - implementation process. Although much of the knowledge needed was gleaned from document a- tion and code context, they were always willing to consult personally on some of the less obvious issues and enhancements necessary.

More Details
Results 51–75 of 77
Results 51–75 of 77