Pulse-burst particle image velocimetry has been used to acquire time-resolved data at 37.5 kHz of the flow over a finite-width rectangular cavity at Mach 0.8. Power spectra of the particle image velocimetry data reveal four resonance modes that match the frequencies detected simultaneously using high-frequency wall pressure sensors, but whose magnitudes exhibit spatial dependence throughout the cavity. Spatiotemporal cross correlations of velocity to pressure were calculated after bandpass filtering for specific resonance frequencies. Cross-correlation magnitudes express the distribution of resonance energy, revealing local maxima and minima at the edges of the shear layer attributable to wave interference between downstream-and upstream-propagating disturbances. Turbulence intensities were calculated using a triple decomposition and are greatest in the core of the shear layer for higher modes, where resonant energies ordinarily are lower. Most of the energy for the lowest mode lies in the recirculation region and results principally from turbulence rather than resonance. Together, the velocity-pressure cross correlations and the triple-decomposition turbulence intensities explain the sources of energy identified in the spatial distributions of power spectra amplitudes.
The resonance modes in Mach 0.94 turbulent flow over a cavity having a length-to-depth ratio of five were explored using time-resolved particle image velocimetry and time-resolved pressure sensitive paint. Mode-switching occurred in the velocity field simultaneous with the pressure field. The first cavity mode corresponded to large-scale motions in shear layer and in the vicinity of the recirculation region, whereas the second and third modes contained organized structures associated with shear layer vortices. Modal surface pressures exhibited streamwise periodicity generated by the interference of downstream-traveling disturbances in shear layer with upstream-traveling acoustical waves. Because of this interference, the modal velocity fields also exhibited local maxima at locations containing pressure minima and vice-versa. Modal convective (phase) velocities, based on cross-correlations of bandpass-filtered velocity fields, decreased with decreasing mode number as the modal activity resided in lower portions of the cavity. These phase velocities also exhibited streamwise periodicity caused by wave interference. The measurements demonstrate that despite the complexities inherent in compressible cavity flows, many of the most prevalent resonance dynamics can be described with simple acoustical analogies.
Boundary-layer transition was measured on a pitched, 7° half-angle cone in a Mach 8 conventional wind tunnel. On a smooth cone, transition via second-mode waves was ob- served at all angles of attack. In addition, naturally-excited stationary crossow waves were apparent in temperature sensitive paint images, but did not appear to lead to transition. Two patterns of roughness elements were used to generate higher-amplitude stationary crossow waves. Breakdown of the stationary waves was observed. The roughness resulted in instability amplitudes nearly an order of magnitude larger than the smooth cone at the same Reynolds numbers and higher instability growth rates. Transition occurred 30% - 40% sooner using the roughness elements with peak amplitudes near 15 - 20%, for α ≥ 4°. A low-frequency, coherent wave was measured at all angles of attack. The calculated phase velocity shows a strong dependence on angle of attack, but the propagation angle is similar for all non-zero α. The measured wave properties are curiously similar to measurements of a suspected tunnel-noise-driven instability made on an elliptic cone at Mach 6.
we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.
Fluid-structure interactions were studied on a 7 * half-angle cone in the Sandia Hypersonic Wind Tunnel at Mach 8 over a range of freestream Reynolds numbers b etween 3 . 3 and 14 . 5 x 10 6 / m . A thin panel with tunable structural natural frequencies was integrated into the cone and exposed to naturally developing boundary layers. An elevated panel re sponse was measured during boundary- layer transition at frequencies corresponding to the turbu lent burst rate, and lower vibrations were measured under a turbulent boundary layer. Controlled pert urbations from an electrical discharge were then introduced into the boundary layer at varying freq uencies corresponding to the struc- tural natural frequencies of the panel. The perturbations w ere not strong enough to drive a panel response exceeding that due to natural transition. Instead at high repetition rates, the perturber modified the turbulent burst rate and intermittency on the co ne and therefore changed the condi- tions for when an elevated transitional panel vibration res ponse occurred. Studies were also conducted in the Boeing/AFOSR Mach 6 Quiet Tunnel at Purdue University. Under quiet flow, natural transition does not occur, and the c ontrolled perturbations are the only disturbance source. A clear panel response to turbulent spo ts created by the controlled pertur- bations was observed at varying frequencies of spot generat ion. The quiet-flow measurements confirm the clear relationship between turbulent spot passa ge and panel vibration.
Fluid–structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.58–1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of seven. The store vibrated in response to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance frequencies. Cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response to cavity tones was much more limited. Increased surface area associated with tail fins raised vibration levels. The store had interchangeable components to vary its natural frequencies by about 10–300 Hz. By tuning natural frequencies, mode-matched cases were explored where a prominent cavity tone frequency matched a structural natural frequency of the store. Mode matching in the streamwise and wall-normal directions produced substantial increases in peak store vibrations, though the response of the store remained linear with dynamic pressure. Near mode-matched frequencies, changes in cavity tone frequencies of only 1% altered store peak vibrations by as much as a factor of two. In conclusion, mode matching in the spanwise direction did little to increase vibrations.
Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; McNamara, Jack J.; Casper, Katya M.
The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and they can result in higher maximumpanel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. These results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.
Fluid-structure interactions were studied on a 7° half-angle cone in the Sandia Hypersonic Wind Tunnel at Mach 8 over a range of freestream Reynolds numbers between 3.3 and 14.5 × 106/m. A thin panel with tunable structural natural frequencies was integrated into the cone and exposed to naturally developing boundary layers. An elevated panel response was measured during boundary-layer transition at frequencies corresponding to the turbulent burst rate, and lower vibrations were measured under a turbulent boundary layer. Controlled perturbations from an electrical discharge were then introduced into the boundary layer at varying frequencies corresponding to the structural natural frequencies of the panel. The perturbations were not strong enough to drive a panel response exceeding that due to natural transition. Instead at high repetition rates, the perturber modified the turbulent burst rate and intermittency on the cone and therefore changed the conditions for when an elevated transitional panel vibration response occurred.
Fluid-structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.58-1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-To-depth ratio of seven. The store vibrated in response to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance frequencies. Cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response to cavity tones was much more limited. Increased surface area associated with tail fins raised vibration levels. The store had interchangeable components to vary its natural frequencies by about 10-300 Hz. By tuning natural frequencies, mode-matched cases were explored where a prominent cavity tone frequency matched a structural natural frequency of the store. Mode matching in the streamwise and wall-normal directions produced substantial increases in peak store vibrations, though the response of the store remained linear with dynamic pressure. Near mode-matched frequencies, changes in cavity tone frequencies of only 1% altered store peak vibrations by as much as a factor of two. Mode matching in the spanwise direction did little to increase vibrations.