Publications

Results 26–50 of 106
Skip to search filters

Localized corrosion of low-carbon steel at the nanoscale

npj Materials Degradation

Hayden, Steven C.; Chisholm, Claire; Grudt, Rachael O.; Aguiar, Jeffery A.; Mook, William M.; Kotula, Paul G.; Pilyugina, Tatiana S.; Bufford, Daniel C.; Hattar, Khalid M.; Kucharski, Timothy J.; Taie, Ihsan M.; Ostraat, Michele L.; Jungjohann, Katherine L.

Mitigating corrosion remains a daunting challenge due to localized, nanoscale corrosion events that are poorly understood but are known to cause unpredictable variations in material longevity. Here, the most recent advances in liquid-cell transmission electron microscopy were employed to capture the advent of localized aqueous corrosion in carbon steel at the nanoscale and in real time. Localized corrosion initiated at a triple junction formed by a solitary cementite grain and two ferrite grains and then continued at the electrochemically-active boundary between these two phases. With this analysis, we identified facetted pitting at the phase boundary, uniform corrosion rates from the steel surface, and data that suggest that a re-initiating galvanic corrosion mechanism is possible in this environment. These observations represent an important step toward atomically defining nanoscale corrosion mechanisms, enabling the informed development of next-generation inhibition technologies and the improvement of corrosion predictive models.

More Details

Construction Vibration Impacts on the Center for Integrated Nanotechnologies

Hearne, Sean J.; Kostranchuk, Theodore K.; Jungjohann, Katherine L.; Bussmann, Ezra B.; Swartzentruber, Brian S.; Weiss, Karl W.; Wowk, Victor W.

Under the direction of the James W. Todd, Assistant Manager for Engineering within the National Nuclear Security Administration Sandia Field Office, the team listed above has performed the attached study to evaluate the vibration sensitivity of the Center for Integrated Nanotechnolog ies and propose possible mitigation strategies .

More Details

Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces

Journal of Physical Chemistry C

Leung, Kevin L.; Jungjohann, Katherine L.

Effective passivation of lithium metal surfaces, and prevention of battery-shorting lithium dendrite growth, are critical for implementing lithium metal anodes for batteries with increased power densities. Nanoscale surface heterogeneities can be "hot spots" where anode passivation breaks down. Motivated by the observation of lithium dendrites in pores and grain boundaries in all-solid batteries, we examine lithium metal surfaces covered with Li2O and/or LiF thin films with grain boundaries in them. Electronic structure calculations show that at >0.25 V computed equilibrium overpotential Li2O grain boundaries with sufficiently large pores can accommodate Li0 atoms which aid e- leakage and passivation breakdown. Strain often accompanies Li insertion; applying an ∼1.7% strain already lowers the computed overpotential to 0.1 V. Lithium metal nanostructures as thin as 12 Å are thermodynamically favored inside cracks in Li2O films, becoming "incipient lithium filaments". LiF films are more resistant to lithium metal growth. The models used herein should in turn inform passivating strategies in all-solid-state batteries.

More Details
Results 26–50 of 106
Results 26–50 of 106