Report on the Development of the Sandia National Laboratories Chemical Analysis System for Vapor-Phase Monitoring of CW Agents for the EDS
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sensors and Actuators B
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report contains the summary of the 'Magnetophoretic Bead Trapping in a High-Flowrate Biological Detection System' LDRD project 74795. The objective of this project is to develop a novel biodetection system for high-throughput sample analysis. The chief application of this system is in detection of very low concentrations of target molecules from a complex liquid solution containing many different constituents--some of which may interfere with identification of the target molecule. The system is also designed to handle air sampling by using an aerosol system (for instance a WESP - Wet Electro-Static Precipitator, or an impact spray system) to get air sample constituents into the liquid volume. The system described herein automatically takes the raw liquid sample, whether air converted or initially liquid matrix, and mixes in magnetic detector beads that capture the targets of interest and then performs the sample cleanup function, allowing increased sensitivity and eliminating most false positives and false negatives at a downstream detector. The surfaces of the beads can be functionalized in a variety of ways in order to maximize the number of targets to be captured and concentrated. Bacteria and viruses are captured using antibodies to surface proteins on bacterial cell walls or viral particle coats. In combination with a cell lysis or PCR (Polymerase Chain Reaction), the beads can be used as a DNA or RNA probe to capture nucleic acid patterns of interest. The sample cleanup capability of this system would allow different raw biological samples, such as blood or saliva to be analyzed for the presence of different infectious agents (e.g. smallpox or SARS). For future studies, we envision functionalizing bead surfaces to bind to chemical weapons agents, radio-isotopes, and explosives. The two main objectives of this project were to explore methods for enhancing the mixing of the capture microspheres in the sample, and to develop a novel high-throughput magnetic microsphere trap. We have developed a novel technique using the magnetic capture microspheres as 'stirrer bars' in a fluid sample to enhance target binding to the microsphere surfaces. We have also made progress in developing a polymer-MEMS electromagnet for trapping magnetic spheres in a high-flowrate fluid format.
Proposed for publication in Journal of the American Chemical Society.
Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.
Proposed for publication in Chemistry of Materials.
Abstract not provided.
We have undertaken the synthesis of a thin film ''All Ceramic Battery'' (ACB) using solution route processes. Based on the literature and experimental results, we selected SnO{sub 2}, LiCoO{sub 2}, and LiLaTiO{sub 3} (LLT) as the anode, cathode, and electrolyte, respectively. Strain induced by lattice mismatch between the cathode and bottom electrode, as estimated by computational calculations, indicate that thin film orientations for batteries when thicknesses are as low as 500 {angstrom} are strongly controlled by surface energies. Therefore, we chose platinized silicon as the basal platform based on our previous experience with this material. The anode thin films were generated by standard spin-cast methods and processing using a solution of [Sn(ONep)]{sub 8} and HOAc which was found to form Sn{sub 6}(O){sub 4}(ONep){sub 4}. Electrochemical evaluation showed that the SnO{sub 2} was converted to Sn{sup o} during the first cycle. The cathode was also prepared by spin coating using the novel [Li(ONep)]{sub 8} and Co(OAc){sub 2}. The films could be electrochemically cycled (i.e., charged/discharged), with all of the associated structural changes being observable by XRD. Computational models indicated that the LLT electrolyte would be the best available ceramic material for use as the electrolyte. The LLT was synthesized from [Li(ONep)]{sub 8}, [Ti(ONep){sub 4}]{sub 2}, and La(DIP){sub 3}(py){sub 3} with RTP processing at 900 C being necessary to form the perovskite phase. Alternatively, a novel route to thin films of the block co-polymer ORMOLYTE was developed. The integration of these components was undertaken with each part of the assembly being identifiably by XRD analysis (this will allow us to follow the progress of the charge/discharge cycles of the battery during use). SEM investigations revealed the films were continuous with minimal mixing. All initial testing of the thin-film cathode/electrolyte/anode ACB devices revealed electrical shorting. Alternative approaches for preparing non-shorted devices (e.g. inverted and side-by-side) are under study.
Chemistry of Materials
Silsesquioxanes are a family of siloxane network polymers that have become important as vehicles for introducing organic functionalities into sol-gel materials. However, there has not been a systematic study of the capacity of organotrialkoxysilanes to form gels through the sol-gel process. In this study, we examined the sol-gel chemistry of organotrialkoxysilanes (RSi(OR′)3) with different organic groups (R = H, Me, Et, Pr, i-Pr, n-Bu, i-Bu, t-Bu, hexyl, octyl, decyl, dodecyl, hexadecyl, octadecyl, cyclohexyl, vinyl, phenyl, benzyl, phenethyl, chloromethyl, chloromethylphenyl, and tridecafluoro-1,1,2,2-tetrahydrooctyl) with methoxide or ethoxide substituents on silicon, at varying monomer concentrations, and under acidic, neutral, and basic conditions. Gels were obtained from the sol-gel polymerization of the monomers with R′ = Me and R = H, Me, vinyl, chloromethyl, chloromethylphenyl, hexadecyl, and octadecyl and R′ = Et and R = H, Me, Et, chloromethyl, vinyl, dodecyl, hexadecyl, and octadecyl. Formation of gels, even with these monomers, was often circumvented by phase separation phenomena, giving rise to crystalline oligomers, resinous materials, and precipitates. Gels obtained from these polymerizations were processed as xerogels and characterized by solid-state NMR, microscopy, and nitrogen sorption porosimetry.
Macromolecules
Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.
Ring-opening polymerization (ROP) of disilaoxacyclopentanes has proven to be an excellent approach to sol-gel type hybrid organic-inorganic materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared by an organic base or Bronsted acid (formic or triflic acid), without the use of solvents and water, they have low VOC's and show little shrinkage during processing.
American Chemical Society, Polymer Preprints, Division of Polymer Chemistry
A novel alkylene-bridged disilaoxacyclopentanes were synthesized through the same methodology utilized in the synthesis of phenylene-bridged disilaoxacyclopentane. Disilaoxacyclopentanes were successfully polymerized using photo-acid generators. Furthermore, it was also been able to apply thin films of these materials to different substrates. Successful ring open polymerization (ROP) of these materials using photo-acid generators should allow to use these materials for applications such as conformal coatings and microlithography.