Copy of Copy of LTCC IN MICROELECTRONICS MICROSYSTEMS AND SENSORS
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
TRANSDUCERS and EUROSENSORS '07 - 4th International Conference on Solid-State Sensors, Actuators and Microsystems
For most orbital maneuvers, small satellites in the sub-10 kg range require thrusters capable of spanning the micro-Newton to milli-Newton force range. At this scale, electrokinetic (EK) pumping offers precise metering of monergolic or hypergolic liquid propellants under purely electrical control at pressures and flow rates well-suited to microthruster applications. We have demonstrated direct and indirect EK pumping for delivery of anhydrous hydrazine and hydrogen peroxide monopropellants, respectively, into capillary-based microthrusters with integrated in-line catalyst beds. Catalytic decomposition generates gases which accelerate through a plasma-formed converging-diverging nozzle, producing thrust. Specific impulses up to 190 s have been shown for hydrazine in non-optimized nozzles. ©2007 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sensors and Actuators-B
Abstract not provided.
Abstract not provided.
Low Temperature Cofired Ceramic (LTCC) has proven to be an enabling medium for microsystem technologies, because of its desirable electrical, physical, and chemical properties coupled with its capability for rapid prototyping and scalable manufacturing of components. LTCC is viewed as an extension of hybrid microcircuits, and in that function it enables development, testing, and deployment of silicon microsystems. However, its versatility has allowed it to succeed as a microsystem medium in its own right, with applications in non-microelectronic meso-scale devices and in a range of sensor devices. Applications include silicon microfluidic ''chip-and-wire'' systems and fluid grid array (FGA)/microfluidic multichip modules using embedded channels in LTCC, and cofired electro-mechanical systems with moving parts. Both the microfluidic and mechanical system applications are enabled by sacrificial volume materials (SVM), which serve to create and maintain cavities and separation gaps during the lamination and cofiring process. SVMs consisting of thermally fugitive or partially inert materials are easily incorporated. Recognizing the premium on devices that are cofired rather than assembled, we report on functional-as-released and functional-as-fired moving parts. Additional applications for cofired transparent windows, some as small as an optical fiber, are also described. The applications described help pave the way for widespread application of LTCC to biomedical, control, analysis, characterization, and radio frequency (RF) functions for macro-meso-microsystems.
Abstract not provided.
Micro Total Analysis Systems - Proceedings of MicroTAS 2006 Conference: 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences
We present our initial results on the integration of a fluorescence- activated cell sorter into a microfluidic platform for the study of macrophages. We show that hydrodynamically focused macrophages can be efficiently sorted into another laminar flow by optical-force deflection, similar to optical tweezers. Although high laser power is required for sorting macrophages, initial observations show no obvious laser damage to the cells. © 2006 Society for Chemistry and Micro-Nano Systems.
Low-temperature co-fired ceramic (LTCC) enables development and testing of critical elements on microsystem boards as well as nonmicroelectronic meso-scale applications. We describe silicon-based microelectromechanical systems packaging and LTCC meso-scale applications. Microfluidic interposers permit rapid testing of varied silicon designs. The application of LTCC to micro-high-performance liquid chromatography (?-HPLC) demonstrates performance advantages at very high pressures. At intermediate pressures, a ceramic thermal cell lyser has lysed bacteria spores without damaging the proteins. The stability and sensitivity of LTCC/chemiresistor smart channels are comparable to the performance of silicon-based chemiresistors. A variant of the use of sacrificial volume materials has created channels, suspended thick films, cavities, and techniques for pressure and flow sensing. We report on inductors, diaphragms, cantilevers, antennae, switch structures, and thermal sensors suspended in air. The development of 'functional-as-released' moving parts has resulted in wheels, impellers, tethered plates, and related new LTCC mechanical roles for actuation and sensing. High-temperature metal-to-LTCC joining has been developed with metal thin films for the strong, hermetic interfaces necessary for pins, leads, and tubes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Autonomous bio-chemical agent detectors require sample preparation involving multiplex fluid control. We have developed a portable microfluidic pump array for metering sub-microliter volumes at flowrates of 1-100 {micro}L/min. Each pump is composed of an electrokinetic (EK) pump and high-voltage power supply with 15-Hz feedback from flow sensors. The combination of high pump fluid impedance and active control results in precise fluid metering with nanoliter accuracy. Automated sample preparation will be demonstrated by labeling proteins with fluorescamine and subsequent injection to a capillary gel electrophoresis (CGE) chip.
Abstract not provided.