Theoretical approaches to compute accurate kinetics of the 1-butyl + O2 reaction
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry A
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry Letters
Predictive simulation for designing efficient engines requires detailed modeling of combustion chemistry, for which the possibility of unknown pathways is a continual concern. Here, we characterize a low-lying water elimination pathway from key hydroperoxyalkyl (QOOH) radicals derived from alcohols. The corresponding saddle-point structure involves the interaction of radical and zwitterionic electronic states. This interaction presents extreme difficulties for electronic structure characterizations, but we demonstrate that these properties of this saddle point can be well captured by M06-2X and CCSD(T) methods. Experimental evidence for the existence and relevance of this pathway is shown in recently reported data on the low-temperature oxidation of isopentanol and isobutanol. In these systems, water elimination is a major pathway, and is likely ubiquitous in low-temperature alcohol oxidation. These findings will substantially alter current alcohol oxidation mechanisms. Moreover, the methods described will be useful for the more general phenomenon of interacting radical and zwitterionic states. © 2013 American Chemical Society.
Proceedings of the Combustion Institute
Unimolecular pressure- and temperature-dependent decomposition rate coefficients of radicals derived from n- and i-propanol by H-atom abstraction are calculated using a time-dependent master equation in the 300-2000 K temperature range. The calculations are based on a C3H7O potential energy surface, which was previously tested successfully for the propene + OH reaction. All rate coefficients are obtained with internal consistency with particular attention paid to shallow wells. After minor adjustments very good agreement with the few available experimental results is obtained. Several interesting pathways are uncovered, such as the catalytic dehydration, well-skipping reactions and reactions forming enols. The results of the calculations can be readily used in CHEMKIN simulations or to assess important channels for higher alcohols. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Abstract not provided.
Optimization of new transportation fuels and engine technologies requires the characterization of the combustion chemistry of a wide range of fuel classes. Theoretical studies of elementary reactions — the building blocks of complex reaction mechanisms — are essential to accurately predict important combustion processes such as autoignition of biofuels. The current bottleneck for these calculations is a user-intensive exploration of the underlying potential energy surface (PES), which relies on the “chemical intuition” of the scientist to propose initial guesses for the relevant chemical configurations. For newly emerging fuels, this approach cripples the rate of progress because of the system size and complexity. The KinBot program package aims to accelerate the detailed chemical kinetic description of combustion, and enables large-scale systematic studies on the sub-mechanism level.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Chemistry Chemical Physics
The branched C 5 alcohol isopentanol (3-methylbutan-1-ol) has shown promise as a potential biofuel both because of new advanced biochemical routes for its production and because of its combustion characteristics, in particular as a fuel for homogeneous-charge compression ignition (HCCI) or related strategies. In the present work, the fundamental autoignition chemistry of isopentanol is investigated by using the technique of pulsed-photolytic Cl-initiated oxidation and by analyzing the reacting mixture by time-resolved tunable synchrotron photoionization mass spectrometry in low-pressure (8 Torr) experiments in the 550-750 K temperature range. The mass-spectrometric experiments reveal a rich chemistry for the initial steps of isopentanol oxidation and give new insight into the low-temperature oxidation mechanism of medium-chain alcohols. Formation of isopentanal (3-methylbutanal) and unsaturated alcohols (including enols) associated with HO 2 production was observed. Cyclic ether channels are not observed, although such channels dominate OH formation in alkane oxidation. Rather, products are observed that correspond to formation of OH via β-C-C bond fission pathways of QOOH species derived from β- and γ-hydroxyisopentylperoxy (RO 2) radicals. In these pathways, internal hydrogen abstraction in the RO 2 QOOH isomerization reaction takes place from either the -OH group or the C-H bond in α-position to the -OH group. These pathways should be broadly characteristic for longer-chain alcohol oxidation. Isomer-resolved branching ratios are deduced, showing evolution of the main products from 550 to 750 K, which can be qualitatively explained by the dominance of RO 2 chemistry at lower temperature and hydroxyisopentyl decomposition at higher temperature. © 2012 The Owner Societies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Zeitschrift fur Physikalische Chemie
Although the propene+OH reaction has been in the center of interest of numerous experimental and theoretical studies, rate coefficients have never been determined experimentally between ∼600 and ∼ 750 K, where the reaction is governed by the complex interaction of addition, back-dissociation and abstraction. In this work OH time-profiles are measured in two independent laboratories over a wide temperature region (200-950 K) and are analyzed incorporating recent theoretical results. The datasets are consistent both with each other and with the calculated rate coefficients. We present a simplified set of reactions validated over a broad temperature and pressure range, that can be used in smaller combustion models for propene+OH. In addition, the experimentally observed kinetic isotope effect for the abstraction is rationalized using ab initio calculations and variational transition-state theory. We recommend the following approximate description of the OH+C 3H6 reaction: C3H6+OH⇄C 3H6OH (R1a,R-1a) C3H6+OH→C 3H5+H2O (R1b) k1a(200K ≤ T ≤ 950 K;1 bar ≤ P) = 1.45×10-11 (T/K)-0.18e 460K/Tcm3 molecule-1s-1 k -1a(200 K ≤ T ≤ 950 K; 1 bar ≤ P) = 5.74×10 12e-12690K/Ts-1 k1b(200 K ≤ T ≤ 950 K) = 1.63×10-18 (T/K)2.36e -725K/T cm3 molecule-1s-1. © by Oldenbourg Wissenschaftsverlag, München.
Abstract not provided.
Journal of Physical Chemistry
Abstract not provided.
Abstract not provided.