Publications

Results 26–50 of 116
Skip to search filters

Uncertainty in master-equation-based rate coefficient calculations

Mayer, Morgan M.; Zador, Judit Z.; Sargsyan, Khachik S.

Rate coefficients are key quantities in gas phase kinetics and can be determined theoretically via master equation (ME) calculations. Rate coefficients characterize how fast a certain chemical species reacts away due to collisions into a specific product. Some of these collisions are simply transferring energy between the colliding partners, in which case the initial chemical species can undergo a unimolecular reaction: dissociation or isomerization. Other collisions are reactive, and the colliding partners either exchange atoms, these are direct reactions, or form complexes that can themselves react further or get stabilized by deactivating collisions with a bath gas. The input of MEs are molecular parameters: geometries, energies, and frequencies determined from ab initio calculations. While the calculation of these rate coefficients using ab initio data is becoming routine in many cases, the determination of the uncertainties of the rate coefficients are often ignored, sometimes crudely assessed by varying independently just a few of the numerous parameters, and only occasionally studied in detail. In this study, molecular frequencies, barrier heights, well depths, and imaginary frequencies (needed to calculate quantum mechanical tunneling) were automatically perturbed in an uncorrelated fashion. Our Python tool, MEUQ, takes user requests to change all or specified well, barrier, or bimolecular product parameters for a reaction. We propagate the uncertainty in these input parameters and perform global sensitivity analysis in the rate coefficients for the ethyl + O2 system using state-of-the-art uncertainty quantification (UQ) techniques via Python interface to UQ Toolkit (www.sandia.gov/uqtoolkit). A total of 10,000 sets of rate coefficients were collected after perturbing 240 molecular parameters. With our methodology, sensitive mechanistic steps can be revealed to a modeler in a straightforward manner for identification of significant and negligible influences in bimolecular reactions.

More Details

LDRD 200166: In-Cylinder Diagnostics to Overcome Efficiency Barriers in Natural Gas Engines

Musculus, Mark P.; Zador, Judit Z.; Stewart, Kenneth D.; Li, Zheming L.; Cicone, Dave J.; Roberts, Greg R.

The high-level objective of this project is to solve national-s ecurity problems associated with petroleum use, cost, and environmental impacts by enabling more efficient use of natural-gas-fueled internal co mbustion engines. An improved sci ence-base on end-gas autoignition, or "knock," is re quired to support engineering of more efficient engine designs through predictive modeling. An existing optical diesel engine facility is retrofitted for natural gas fueling with laser-spark-ignition c ombustion to provide in- cylinder imaging and pressure data under knocking combustion. Z ero-dimensional chemical-kinetic modeling of aut oignition, adiabatically constr ained by the measured cylinder pressure, isolates the role of autoignition chemistry. OH* chemiluminescence imaging reveals six different c ategories of knock onset that de pend on proximity to engine surfaces and the in-cylinder deflagration. Modeling resu lts show excellent prediction regardless of the knoc k category, thereby validating state-of-the-art kinetic mechanisms. The results also provide guidance for future work t o build a science base on the factors that affect the deflagration rate.

More Details

Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods

Journal of the American Chemical Society

Grambow, Colin A.; Jamal, Adeel; Li, Yi P.; Green, William H.; Zador, Judit Z.; Suleimanov, Yury V.

Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches - 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).

More Details

Thermochemistry of the smallest QOOH radical from the roaming fragmentation of energy selected methyl hydroperoxide ions

Physical Chemistry Chemical Physics

Covert, Kyle J.; Voronova, Krisztina; Torma, Krisztián G.; Bodi, Andras; Zador, Judit Z.; Sztáray, Bálint

The dissociative photoionization processes of methyl hydroperoxide (CH3OOH) have been studied by imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy experiments as well as quantum-chemical and statistical rate calculations. Energy selected CH3OOH+ ions dissociate into CH2OOH+, HCO+, CH3 +, and H3O+ ions in the 11.4-14.0 eV photon energy range. The lowest-energy dissociation channel is the formation of the cation of the smallest "QOOH" radical, CH2OOH+. An extended RRKM model fitted to the experimental data yields a 0 K appearance energy of 11.647 ± 0.005 eV for the CH2OOH+ ion, and a 74.2 ± 2.6 kJ mol-1 mixed experimental-theoretical 0 K heat of formation for the CH2OOH radical. The proton affinity of the Criegee intermediate, CH2OO, was also obtained from the heat of formation of CH2OOH+ (792.8 ± 0.9 kJ mol-1) to be 847.7 ± 1.1 kJ mol-1, reducing the uncertainty of the previously available computational value by a factor of 4. RRKM modeling of the complex web of possible rearrangement-dissociation processes was used to model the higher-energy fragmentation. Supported by Born-Oppenheimer molecular dynamics simulations, we found that the HCO+ fragment ion is produced through a roaming transition state followed by a low barrier. H3O+ is formed in a consecutive process from the CH2OOH+ fragment ion, while direct C-O fission of the molecular ion leads to the methyl cation.

More Details

Photoionization Efficiencies of Five Polycyclic Aromatic Hydrocarbons

Journal of Physical Chemistry A

Johansson, Karl O.; Campbell, Matthew F.; Elvati, Paolo; Schrader, Paul E.; Zador, Judit Z.; Richards-Henderson, Nicole K.; Wilson, Kevin R.; Violi, Angela; Michelsen, Hope A.

We have measured photoionization-efficiency curves for pyrene, fluoranthene, chrysene, perylene, and coronene in the photon energy range of 7.5-10.2 eV and derived their photoionization cross-section curves in this energy range. All measurements were performed using tunable vacuum ultraviolet (VUV) radiation generated at the Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory. The VUV radiation was used for photoionization, and detection was performed using a time-of-flight mass spectrometer. We measured the photoionization efficiency of 2,5-dimethylfuran simultaneously with those of pyrene, fluoranthene, chrysene, perylene, and coronene to obtain references of the photon flux during each measurement from the known photoionization cross-section curve of 2,5-dimethylfuran.

More Details

Critical Assessment of Photoionization Efficiency Measurements for Characterization of Soot-Precursor Species

Journal of Physical Chemistry A

Johansson, Karl O.; Zador, Judit Z.; Elvati, Paolo; Campbell, Matthew F.; Schrader, Paul E.; Richards-Henderson, Nicole K.; Wilson, Kevin R.; Violi, Angela; Michelsen, Hope A.

We present a critical evaluation of photoionization efficiency (PIE) measurements coupled with aerosol mass spectrometry for the identification of condensed soot-precursor species extracted from a premixed atmospheric-pressure ethylene/oxygen/nitrogen flame. Definitive identification of isomers by any means is complicated by the large number of potential isomers at masses likely to comprise particles at flame temperatures. This problem is compounded using PIE measurements by the similarity in ionization energies and PIE-curve shapes among many of these isomers. Nevertheless, PIE analysis can provide important chemical information. For example, our PIE curves show that neither pyrene nor fluoranthene alone can describe the signal from C16H10 isomers and that coronene alone cannot describe the PIE signal from C24H12 species. A linear combination of the reference PIE curves for pyrene and fluoranthene yields good agreement with flame-PIE curves measured at 202 u, which is consistent with pyrene and fluoranthene being the two major C16H10 isomers in the flame samples, but does not provide definite proof. The suggested ratio between fluoranthene and pyrene depends on the sampling conditions. We calculated the values of the adiabatic-ionization energy (AIE) of 24 C16H10 isomers. Despite the small number of isomers considered, the calculations show that the differences in AIEs between several of the isomers can be smaller than the average thermal energy at room temperature. The calculations also show that PIE analysis can sometimes be used to separate hydrocarbon species into those that contain mainly aromatic rings and those that contain significant aliphatic content for species sizes investigated in this study. Our calculations suggest an inverse relationship between AIE and the number of aromatic rings. We have demonstrated that further characterization of precursors can be facilitated by measurements that test species volatility. (Graph Presented).

More Details

Initiation Reactions in Acetylene Pyrolysis

Journal of Physical Chemistry A

Zador, Judit Z.; Fellows, Madison D.; Miller, James A.

In gas-phase combustion systems the interest in acetylene stems largely from its role in molecular weight growth processes. The consensus is that above 1500 K acetylene pyrolysis starts mainly with the homolytic fission of the C-H bond creating an ethynyl radical and an H atom. However, below ∼1500 K this reaction is too slow to initiate the chain reaction. It has been hypothesized that instead of dissociation, self-reaction initiates this process. Nevertheless, rigorous theoretical or direct experimental evidence is lacking, to an extent that even the molecular mechanism is debated in the literature. In this work we use rigorous ab initio transition-state theory master equation methods to calculate pressure- and temperature-dependent rate coefficients for the association of two acetylene molecules and related reactions. We establish the role of vinylidene, the high-energy isomer of acetylene in this process, compare our results with available experimental data, and assess the competition between the first-order and second-order initiation steps. We also show the effect of the rapid isomerization among the participating wells and highlight the need for time-scale analysis when phenomenological rate coefficients are compared to observed time scales in certain experiments. (Graph Presented).

More Details

Theoretical kinetics of O + C2H4

Proceedings of the Combustion Institute

Li, Xiaohu; Jasper, Ahren W.; Zador, Judit Z.; Miller, James A.; Klippenstein, Stephen J.

The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The kinetics of 3O+C2H4 was studied using an ab initio transition state theory based master equation approach that includes an a priori description of ISC. The theoretical results were remarkably in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Above approximately equal 1000 K CH2CHO+H and CH2+CH2O were predicted as the major products which differs from the room temperature preference for CH3+HCO and from the prediction of a previous detailed master equation study.

More Details

Reaction mechanisms of R and QOOH radicals produced in low-temperature oxidation of butanone

10th U.S. National Combustion Meeting

Caravan, Rebecca L.; Rotavera, Brandon; Papajak, Ewa; Antonov, Ivan O.; Ramasesha, Krupa R.; Zador, Judit Z.; Osborn, David L.; Taatjes, Craig A.

Product formation from the low-temperature oxidation of two isotopologues of the proposed biofuel butanone was studied via multiplexed photoionization mass spectrometry (MPIMS) at 500 and 700 K to elucidate product branching ratios for R and QOOH pathways. Products were identified and branching ratios quantified for a number of species, with the aid of ab initio calculations. Chain-inhibiting C-C β-scission of R and select chain-propagating channels are discussed. Whilst methyl vinyl ketone and HOO, (from chain-inhibiting pathways) were found to be major products, chain propagation pathways leading to carbonyl and cyclic ether species following OH-elimination from QOOH were found to be pertinent at both temperatures. At 700 K, R C-C β-scission was significantly enhanced, as evident in the branching ratios, however the formation of QOOH-derived chain-propagation products remained relevant.

More Details

Influence of oxygenation in cyclic hydrocarbons on chain-termination reactions from R + O2: Tetrahydropyran and cyclohexane

Proceedings of the Combustion Institute

Rotavera, Brandon R.; Savee, John D.; Antonov, Ivan O.; Caravan, Rebecca L.; Sheps, Leonid S.; Osborn, David L.; Zador, Judit Z.; Taatjes, Craig A.

Lignocellulosic-derived biofuels represent an important part of sustainable transportation en- ergy and often contain oxygenated functional groups due to the mono- and polysaccharide content in cellulose and hemicellulose. The yields of conjugate alkene + HO2 formation in low-temperature tetrahydropyran oxidation were studied and the influence of oxygen heteroatoms in cyclic hydrocarbons on the associated chain-termination pathways stemming from R + O2 were examined. Relative to the initial radical concentration the trend in conjugate alkene branching fraction showed monotonic positive temperature dependence in both cyclohexane and tetrahydropyran except for tetrahydropyran at 10 torr where increasing the temperature to 700 K caused a decrease. Conjugate alkene branching fractions measured at 1520 torr for cyclohexane and tetrahydropyran followed monotonic positive temperature dependence. In contrast to the results at higher temperature where ring-opening of tetrahydropyranyl radicals interrupted R + O2chemistry and reduces the formation of conjugate alkenes branching fractions measured below 700 K were higher in tetrahydropyran compared to cyclohexane at 10 torr.

More Details

Pressure-dependent competition among reaction pathways from first- and second-O2 additions in the low-temperature oxidation of tetrahydrofuran

Journal of Physical Chemistry A

Antonov, Ivan O.; Zador, Judit Z.; Rotavera, Brandon R.; Papajak, Ewa P.; Osborn, David L.; Taatjes, Craig A.; Sheps, Leonid S.

We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10-2000 Torr and T = 400-700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.

More Details
Results 26–50 of 116
Results 26–50 of 116