QOOH radicals are key intermediates in the chain of reactions leading to the autoignition of hydrocarbons and oxygenated organic compounds. They are thought to undergo two main reactions: OH elimination to form a cyclic ether and HO2 elimination to form an alkene. However, theoretical analysis of various substituted hydroperoxyalkyl radicals has found two new pathways: OH transfer and internal H abstraction assisted OH elimination. To determine the importance of these new pathways, their barrier heights for several substituted alkanes were calculated using various quantum chemical theories and compared to those of the well-known pathways. Several cases revealed possible competition with the well-known pathways. Rate coefficients were calculated for propyl systems but further studies will need to complete rate coefficients and branching fractions for all systems analyzed to understand these new reactions’ role in autoignition.
2,4,dimethyloxetane is an important cyclic ether intermediate that is produced from hydroperoxyalkyl (QOOH) radicals in the low-temperature combustion of n-pentane. However, the reaction mechanisms and rates of consumption pathways remain unclear. In the present work, the pressure- and temperature-dependent kinetics of seven cyclic ether peroxy radicals, which stem from 2,4,dimethyloxetane via H-abstraction and O2 addition, were determined. The automated kinetic workflow code, KinBot, was used to model the complexity of the chemistry in a stereochemically resolved manner and solve the resulting master equations from 300–1000 K and from 0.01–100 atm. The main conclusions from the calculations include (i) diastereomeric cyclic ether peroxy radicals show significantly different reactivities, (ii) the stereochemistry of the peroxy radical determines which QOOH isomerization steps are possible, (iii) conventional QOOH decomposition pathways, such as cyclic ether formation and HO2 elimination, compete with ring-opening reactions, which primarily produce OH radicals, the outcome of which is sensitive to stereochemistry. Ring-opening reactions lead to unique products, such as unsaturated, acyclic peroxy radicals, that form direct connections with species present in other chemical kinetics mechanisms through "cross-over" reactions that may complicate the interpretation of experimental results from combustion of n-pentane and, by extension, other alkanes. For example, one cross-over reaction involving 1-hydroperoxy-4-pentanone-2-yl produces 2-(hydroperoxymethyl)-3-butanone-1-yl, which is an iso-pentane-derived ketohydroperoxide (KHP). At atmospheric pressure, the rate of chemical reactions of all seven peroxy radicals compete with that of collisional stabilization, resulting in well-skipping reactions. However, at 100 atm, only one out of seven peroxy radicals undergoes significant well-skipping reactions. Here, the rates produced from the master equation calculations provide the first foundation for the development of detailed sub-mechanisms for cyclic ether intermediates. In addition, analysis of the complex reaction mechanisms of 2,4-dimethyloxetane-derived peroxy radicals provides insights into the effects of stereoisomers on reaction pathways and product yields.
Depleted uranium hexafluoride (UF6), a stockpiled byproduct of the nuclear fuel cycle, reacts readily with atmospheric humidity, but the mechanism is poorly understood. Here we compare several potential initiation steps at a consistent level of theory, generating underlying structures and vibrational modes using hybrid density functional theory (DFT) and computing relative energies of stationary points with double-hybrid (DH) DFT. A benchmark comparison is performed to assess the quality of DH-DFT data using reference energy differences obtained using a complete-basis-limit coupled-cluster (CC) composite method. The associated large-basis CC computations were enabled by a new general-purpose pseudopotential capability implemented as part of this work. Dispersion-corrected parameter-free DH-DFT methods, namely PBE0-DH-D3(BJ) and PBE-QIDH-D3(BJ), provided mean unsigned errors within chemical accuracy (1 kcal mol-1) for a set of barrier heights corresponding to the most energetically favorable initiation steps. The hydrolysis mechanism is found to proceed via intermolecular hydrogen transfer within van der Waals complexes involving UF6, UF5OH, and UOF4, in agreement with previous studies, followed by the formation of a previously unappreciated dihydroxide intermediate, UF4(OH)2. The dihydroxide is predicted to form under both kinetic and thermodynamic control, and, unlike the alternate pathway leading to the UO2F2 monomer, its reaction energy is exothermic, in agreement with observation. Finally, harmonic and anharmonic vibrational simulations are performed to reinterpret literature infrared spectroscopy in light of this newly identified species.
We present a new geodesic-based method for geometry optimization in a basis set of redundant internal coordinates. Our method updates the molecular geometry by following the geodesic generated by a displacement vector on the internal coordinate manifold, which dramatically reduces the number of steps required to converge to a minimum. Our method can be implemented in any existing optimization code, requiring only implementation of derivatives of the Wilson B-matrix and the ability to numerically solve an ordinary differential equation.
We present a combined experimental and theoretical investigation of the autoignition chemistry of a prototypical cyclic hydrocarbon, cyclopentane. Experiments using a high-pressure photolysis reactor coupled to time-resolved synchrotron VUV photoionization mass spectrometry directly probe the short-lived radical intermediates and products in cyclopentane oxidation reactions. We detect key peroxy radical intermediates ROO and OOQOOH, as well as several hydroperoxides, formed by second O2 addition. Automated quantum chemical calculations map out the R + O2 + O2 reaction channels and demonstrate that the detected intermediates belong to the dominant radical chain-branching pathway: ROO (+ O2) → γ-QOOH + O2 → γ-OOQOOH → products. ROO, OOQOOH, and hydroperoxide products of second-O2 addition undergo extensive dissociative ionization, making their experimental assignment challenging. We use photoionization dynamics calculations to aid in their characterization and report the absolute photoionization spectra of isomerically pure ROO and γ-OOQOOH. A global statistical fit of the observed kinetics enables reliable quantification of the time-resolved concentrations of these elusive, yet critical species, paving the way for detailed comparisons with theoretical predictions from master-equation-based models.
We have extended the computational singular perturbation (CSP) method to differential algebraic equation (DAE) systems and demonstrated its application in a heterogeneous-catalysis problem. The extended method obtains the CSP basis vectors for DAEs from a reduced Jacobian matrix that takes the algebraic constraints into account. We use a canonical problem in heterogeneous catalysis, the transient continuous stirred tank reactor (T-CSTR), for illustration. The T-CSTR problem is modelled fundamentally as an ordinary differential equation (ODE) system, but it can be transformed to a DAE system if one approximates typically fast surface processes using algebraic constraints for the surface species. We demonstrate the application of CSP analysis for both ODE and DAE constructions of a T-CSTR problem, illustrating the dynamical response of the system in each case. We also highlight the utility of the analysis in commenting on the quality of any particular DAE approximation built using the quasi-steady state approximation (QSSA), relative to the ODE reference case.
Chemical kinetics simulations are used to explore whether detailed measurements of relevant chemical species during the oxidation of very dilute fuels (less than 1 Torr partial pressure) in a high-pressure plug flow reactor (PFR) can predict autoignition propensity. We find that for many fuels the timescale for the onset of spontaneous oxidation in dilute fuel/air mixtures in a simple PFR is similar to the 1st-stage ignition delay time (IDT) at stoichiometric engine-relevant conditions. For those fuels that deviate from this simple trend, the deviation is closely related to the peak rate of production of OH, HO2, CH2O, and CO2 formed during oxidation. We use these insights to show that an accurate correlation between simulated profiles of these species in a PFR and 1st-stage IDT can be developed using convolutional neural networks. Our simulations suggest that the accuracy of such a correlation is 10–50%, which is appropriate for rapid fuel screening and may be sufficient for predictive fuel performance modeling.
KinBot is a Python code that automatically characterizes kinetically important stationary points on reactive potential energy surfaces and arranges the results into a form that lends itself easily to master equation calculations. This version of KinBot tackles C, H, O and S atom containing species and unimolecular (isomerization or dissociation) reactions. KinBot iteratively changes the geometry of the reactant to obtain initial guesses for reactive saddle points defined by KinBot's reaction types, which are then optimized by a third-party quantum chemistry package. KinBot verifies the connectivity of the saddle points with the reactant and identifies the products through intrinsic reaction coordinate calculations. New calculations can be automatically spawned from the products to obtain complete potential energy surfaces. The utilities of KinBot include conformer searches, projected frequency and hindered rotor calculations, and the automatic determination of the rotational symmetry numbers. Input files for popular RRKM master equation codes are automatically built, enabling an automated workflow all the way to the calculation of pressure and temperature dependent rate coefficients. Four examples are included. (i) [1,3]-sigmatropic H-migration reactions of unsaturated hydrocarbons and oxygenates are calculated to assess the relative importance of suprafacial and antrafacial reactions. (ii) Saddle points on three products of gamma-valerolactone thermal decomposition are studied and compared to literature potential energy surfaces. (iii) The previously published propene+OH reaction is reproduced to show the capability of building an entire potential energy surface. (iv) All species up to C4 in the Aramco Mech 2.0 are subjected to a KinBot search. Program summary: Program title: KinBot Program files doi: http://dx.doi.org/10.17632/hsh6dvv2zj.1 Licensing provisions: BSD 3-Clause Programming language: Python Supplementary material: 1. A static version of the source code (KinBot.tar), 2. The manual for the static version (KinBot_Manual.pdf) 3. Geometries and energies of the stationary points on the potential energy surface of the sigmatropic reaction search (sigmatropic_H_shift.out) 4. Geometries and energies of the stationary points on the potential energy surface of the propene+ OH central and terminal addition reaction (propene+oh central addition.out, propene+oh terminal addition.out) 5. Geometries and energies of the stationary points on the potential energy surface of gamma valerolactone, 4-pentenoic acid and 3-pentenoic acid (GVL energies and geometries.out, 4PA energies and geometries.out, 3PA energies and geometries.out) 6. Example runs including all input and output files for a one-well search for propanol radical, full PES search for the n-pentyl radical, a search for all homolytic scission in propanol, and the reaction searches for GVL (output.zip) 7. Results of symmetry calculations for a literature benchmark dataset (Symmetry_correct.pdf, Symmetry_wrong.pdf) Nature of problem: Automatic discovery of unimolecular reaction pathways (isomerization and dissociation) for molecules and radicals relevant in gas-phase combustion and atmospheric chemistry, including oxidation and pyrolytic processes for structures including carbon, oxygen, sulfur and hydrogen atoms. The reactants, products, and transition states are characterized using a suite of tools coupled to electronic structure codes, and the results are provided in a format that lends itself easily to calculating rate coefficients based on statistical rate theories with other external codes. Solution method: Reaction pathways are identified using heuristic searches starting from a reactant by iteratively altering its geometry toward a good guess for a transition state for reactions with barriers. The transition state is identified as a first-order saddle point on the potential energy surface, which is located using local optimization methods of third-party quantum chemistry codes. We use intrinsic reaction coordinate calculations to verify the direct connectivity of the saddle point to the reactant and to identify the product species. Conformational searches, hindered rotor potentials, frequency calculations, and high-level optimizations yield the necessary data for RRKM master equation calculations. Additional comments including restrictions and unusual features: KinBot is designed to run on Unix clusters, and is written in Python, compatible with versions 2.7 and 3. It communicates with a PBS or SLURM workload manager to submit quantum chemistry calculations to third-party software. It makes use of a modified fork of ASE for the input writing, calling and output parsing of the quantum chemistry software which has been tested with Gaussian (G09RevD.01). OpenBabel (2.4.1) and RDKit (2018.09.01) are used to convert smiles to internal species representations and for species comparison and results visualization. The output of KinBot can be visualized with the PESViewer script, and graph structures are drawn using NetworkX. The master equation solvers MESS or MESMER are needed to calculate rate coefficients at the end of a given run. This version of KinBot can handle H, C, S, and O atom-containing molecules, and searches for isomerization and dissociation pathways.
Methanol is a benchmark for understanding tropospheric oxidation, but is underpredicted by up to 100% in atmospheric models. Recent work has suggested this discrepancy can be reconciled by the rapid reaction of hydroxyl and methylperoxy radicals with a methanol branching fraction of 30%. However, for fractions below 15%, methanol underprediction is exacerbated. Theoretical investigations of this reaction are challenging because of intersystem crossing between singlet and triplet surfaces – ∼45% of reaction products are obtained via intersystem crossing of a pre-product complex – which demands experimental determinations of product branching. Here we report direct measurements of methanol from this reaction. A branching fraction below 15% is established, consequently highlighting a large gap in the understanding of global methanol sources. These results support the recent high-level theoretical work and substantially reduce its uncertainties.
Rate coefficients are key quantities in gas phase kinetics and can be determined theoretically via master equation (ME) calculations. Rate coefficients characterize how fast a certain chemical species reacts away due to collisions into a specific product. Some of these collisions are simply transferring energy between the colliding partners, in which case the initial chemical species can undergo a unimolecular reaction: dissociation or isomerization. Other collisions are reactive, and the colliding partners either exchange atoms, these are direct reactions, or form complexes that can themselves react further or get stabilized by deactivating collisions with a bath gas. The input of MEs are molecular parameters: geometries, energies, and frequencies determined from ab initio calculations. While the calculation of these rate coefficients using ab initio data is becoming routine in many cases, the determination of the uncertainties of the rate coefficients are often ignored, sometimes crudely assessed by varying independently just a few of the numerous parameters, and only occasionally studied in detail. In this study, molecular frequencies, barrier heights, well depths, and imaginary frequencies (needed to calculate quantum mechanical tunneling) were automatically perturbed in an uncorrelated fashion. Our Python tool, MEUQ, takes user requests to change all or specified well, barrier, or bimolecular product parameters for a reaction. We propagate the uncertainty in these input parameters and perform global sensitivity analysis in the rate coefficients for the ethyl + O2 system using state-of-the-art uncertainty quantification (UQ) techniques via Python interface to UQ Toolkit (www.sandia.gov/uqtoolkit). A total of 10,000 sets of rate coefficients were collected after perturbing 240 molecular parameters. With our methodology, sensitive mechanistic steps can be revealed to a modeler in a straightforward manner for identification of significant and negligible influences in bimolecular reactions.
The high-level objective of this project is to solve national-s ecurity problems associated with petroleum use, cost, and environmental impacts by enabling more efficient use of natural-gas-fueled internal co mbustion engines. An improved sci ence-base on end-gas autoignition, or "knock," is re quired to support engineering of more efficient engine designs through predictive modeling. An existing optical diesel engine facility is retrofitted for natural gas fueling with laser-spark-ignition c ombustion to provide in- cylinder imaging and pressure data under knocking combustion. Z ero-dimensional chemical-kinetic modeling of aut oignition, adiabatically constr ained by the measured cylinder pressure, isolates the role of autoignition chemistry. OH* chemiluminescence imaging reveals six different c ategories of knock onset that de pend on proximity to engine surfaces and the in-cylinder deflagration. Modeling resu lts show excellent prediction regardless of the knoc k category, thereby validating state-of-the-art kinetic mechanisms. The results also provide guidance for future work t o build a science base on the factors that affect the deflagration rate.
Grambow, Colin A.; Jamal, Adeel; Li, Yi P.; Green, William H.; Zador, Judit Z.; Suleimanov, Yury V.
Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches - 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).
The dissociative photoionization processes of methyl hydroperoxide (CH3OOH) have been studied by imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy experiments as well as quantum-chemical and statistical rate calculations. Energy selected CH3OOH+ ions dissociate into CH2OOH+, HCO+, CH3 +, and H3O+ ions in the 11.4-14.0 eV photon energy range. The lowest-energy dissociation channel is the formation of the cation of the smallest "QOOH" radical, CH2OOH+. An extended RRKM model fitted to the experimental data yields a 0 K appearance energy of 11.647 ± 0.005 eV for the CH2OOH+ ion, and a 74.2 ± 2.6 kJ mol-1 mixed experimental-theoretical 0 K heat of formation for the CH2OOH radical. The proton affinity of the Criegee intermediate, CH2OO, was also obtained from the heat of formation of CH2OOH+ (792.8 ± 0.9 kJ mol-1) to be 847.7 ± 1.1 kJ mol-1, reducing the uncertainty of the previously available computational value by a factor of 4. RRKM modeling of the complex web of possible rearrangement-dissociation processes was used to model the higher-energy fragmentation. Supported by Born-Oppenheimer molecular dynamics simulations, we found that the HCO+ fragment ion is produced through a roaming transition state followed by a low barrier. H3O+ is formed in a consecutive process from the CH2OOH+ fragment ion, while direct C-O fission of the molecular ion leads to the methyl cation.
We have measured photoionization-efficiency curves for pyrene, fluoranthene, chrysene, perylene, and coronene in the photon energy range of 7.5-10.2 eV and derived their photoionization cross-section curves in this energy range. All measurements were performed using tunable vacuum ultraviolet (VUV) radiation generated at the Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory. The VUV radiation was used for photoionization, and detection was performed using a time-of-flight mass spectrometer. We measured the photoionization efficiency of 2,5-dimethylfuran simultaneously with those of pyrene, fluoranthene, chrysene, perylene, and coronene to obtain references of the photon flux during each measurement from the known photoionization cross-section curve of 2,5-dimethylfuran.
We present a critical evaluation of photoionization efficiency (PIE) measurements coupled with aerosol mass spectrometry for the identification of condensed soot-precursor species extracted from a premixed atmospheric-pressure ethylene/oxygen/nitrogen flame. Definitive identification of isomers by any means is complicated by the large number of potential isomers at masses likely to comprise particles at flame temperatures. This problem is compounded using PIE measurements by the similarity in ionization energies and PIE-curve shapes among many of these isomers. Nevertheless, PIE analysis can provide important chemical information. For example, our PIE curves show that neither pyrene nor fluoranthene alone can describe the signal from C16H10 isomers and that coronene alone cannot describe the PIE signal from C24H12 species. A linear combination of the reference PIE curves for pyrene and fluoranthene yields good agreement with flame-PIE curves measured at 202 u, which is consistent with pyrene and fluoranthene being the two major C16H10 isomers in the flame samples, but does not provide definite proof. The suggested ratio between fluoranthene and pyrene depends on the sampling conditions. We calculated the values of the adiabatic-ionization energy (AIE) of 24 C16H10 isomers. Despite the small number of isomers considered, the calculations show that the differences in AIEs between several of the isomers can be smaller than the average thermal energy at room temperature. The calculations also show that PIE analysis can sometimes be used to separate hydrocarbon species into those that contain mainly aromatic rings and those that contain significant aliphatic content for species sizes investigated in this study. Our calculations suggest an inverse relationship between AIE and the number of aromatic rings. We have demonstrated that further characterization of precursors can be facilitated by measurements that test species volatility. (Graph Presented).
In gas-phase combustion systems the interest in acetylene stems largely from its role in molecular weight growth processes. The consensus is that above 1500 K acetylene pyrolysis starts mainly with the homolytic fission of the C-H bond creating an ethynyl radical and an H atom. However, below ∼1500 K this reaction is too slow to initiate the chain reaction. It has been hypothesized that instead of dissociation, self-reaction initiates this process. Nevertheless, rigorous theoretical or direct experimental evidence is lacking, to an extent that even the molecular mechanism is debated in the literature. In this work we use rigorous ab initio transition-state theory master equation methods to calculate pressure- and temperature-dependent rate coefficients for the association of two acetylene molecules and related reactions. We establish the role of vinylidene, the high-energy isomer of acetylene in this process, compare our results with available experimental data, and assess the competition between the first-order and second-order initiation steps. We also show the effect of the rapid isomerization among the participating wells and highlight the need for time-scale analysis when phenomenological rate coefficients are compared to observed time scales in certain experiments. (Graph Presented).
The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The kinetics of 3O+C2H4 was studied using an ab initio transition state theory based master equation approach that includes an a priori description of ISC. The theoretical results were remarkably in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Above approximately equal 1000 K CH2CHO+H and CH2+CH2O were predicted as the major products which differs from the room temperature preference for CH3+HCO and from the prediction of a previous detailed master equation study.
Product formation from the low-temperature oxidation of two isotopologues of the proposed biofuel butanone was studied via multiplexed photoionization mass spectrometry (MPIMS) at 500 and 700 K to elucidate product branching ratios for R and QOOH pathways. Products were identified and branching ratios quantified for a number of species, with the aid of ab initio calculations. Chain-inhibiting C-C β-scission of R and select chain-propagating channels are discussed. Whilst methyl vinyl ketone and HOO, (from chain-inhibiting pathways) were found to be major products, chain propagation pathways leading to carbonyl and cyclic ether species following OH-elimination from QOOH were found to be pertinent at both temperatures. At 700 K, R C-C β-scission was significantly enhanced, as evident in the branching ratios, however the formation of QOOH-derived chain-propagation products remained relevant.
Lignocellulosic-derived biofuels represent an important part of sustainable transportation en- ergy and often contain oxygenated functional groups due to the mono- and polysaccharide content in cellulose and hemicellulose. The yields of conjugate alkene + HO2 formation in low-temperature tetrahydropyran oxidation were studied and the influence of oxygen heteroatoms in cyclic hydrocarbons on the associated chain-termination pathways stemming from R + O2 were examined. Relative to the initial radical concentration the trend in conjugate alkene branching fraction showed monotonic positive temperature dependence in both cyclohexane and tetrahydropyran except for tetrahydropyran at 10 torr where increasing the temperature to 700 K caused a decrease. Conjugate alkene branching fractions measured at 1520 torr for cyclohexane and tetrahydropyran followed monotonic positive temperature dependence. In contrast to the results at higher temperature where ring-opening of tetrahydropyranyl radicals interrupted R + O2chemistry and reduces the formation of conjugate alkenes branching fractions measured below 700 K were higher in tetrahydropyran compared to cyclohexane at 10 torr.
We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10-2000 Torr and T = 400-700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.